498 research outputs found

    High Catalytic Activity of Heteropolynuclear Cyanide Complexes Containing Cobalt and Platinum Ions: Visible-Light Driven Water Oxidation

    Get PDF
    A near-stoichiometric amount of O_2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru^(II)(2,2â€Č-bipyridine)_3] as a photosensitizer, Na_2S_2O_8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co^(III) or Pt^(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes

    Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate

    Full text link
    Photocatalytic water oxidation by persulfate (Na2S2O8) with [Ru(bpy)3]2+ (bpy=2,2â€Č‐bipyridine) as a photocatalyst provides a standard protocol to study the catalytic reactivity of water oxidation catalysts. The yield of evolved oxygen per persulfate is regarded as a good index for the catalytic reactivity because the oxidation of bpy of [Ru(bpy)3]2+ and organic ligands of catalysts competes with the catalytic water oxidation. A variety of metal complexes act as catalysts in the photocatalytic water oxidation by persulfate with [Ru(bpy)3]2+ as a photocatalyst. Herein, the catalytic mechanisms are discussed for homogeneous water oxidation catalysis. Some metal complexes are converted to metal oxide or hydroxide nanoparticles during the photocatalytic water oxidation by persulfate, acting as precursors for the actual catalysts. The catalytic reactivity of various metal oxides is compared based on the yield of evolved oxygen and turnover frequency. A heteropolynuclear cyanide complex is the best catalyst reported so far for the photocatalytic water oxidation by persulfate and [Ru(bpy)3]2+, affording 100 % yield of O2 per persulfate.Waterworld: Homogeneous and heterogeneous catalysis and mechanisms of photocatalytic oxidation of water by persulfate with [Ru(bpy)]32+ are compared and discussed including the conversion from homogeneous precatalysts to heterogeneous catalysts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137224/1/asia201501329.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137224/2/asia201501329_am.pd

    Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding

    Get PDF
    As an alternative to Darwinian evolution relying on catalytic promiscuity, a protein may acquire auxiliary function upon metal binding, thus providing it with a novel catalytic machinery. Here we show that addition of cupric ions to a 6-phosphogluconolactonase 6-PGLac bearing a putative metal binding site leads to the emergence of peroxidase activity (kcat7.8 × 10−2 s−1, KM 1.1 × 10−5 M). Both X-ray crystallographic and EPR data of the copper-loaded enzyme Cu·6-PGLacreveal a bis-histidine coordination site, located within a shallow binding pocket capable of accommodating the o-dianisidine substrate

    Phosphorescent sensor for biological mobile zinc

    Get PDF
    A new phosphorescent zinc sensor (ZIrF) was constructed, based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amine (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH[subscript 3]CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer and intraligand charge-transfer transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with K[subscript d] = 11 nM and pK[subscript a] = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples.National Institute of General Medical Sciences (U.S.) (Grant GM065519)Ewha Woman's University (Korea) (RP-Grant 2010

    A Key Role for Old Yellow Enzyme in the Metabolism of Drugs by Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is the etiological agent of Chagas' disease. So far, first choice anti-chagasic drugs in use have been shown to have undesirable side effects in addition to the emergence of parasite resistance and the lack of prospect for vaccine against T. cruzi infection. Thus, the isolation and characterization of molecules essential in parasite metabolism of the anti-chagasic drugs are fundamental for the development of new strategies for rational drug design and/or the improvement of the current chemotherapy. While searching for a prostaglandin (PG) F2α synthase homologue, we have identified a novel “old yellow enzyme” from T. cruzi (TcOYE), cloned its cDNA, and overexpressed the recombinant enzyme. Here, we show that TcOYE reduced 9,11-endoperoxide PGH2 to PGF2α as well as a variety of trypanocidal drugs. By electron spin resonance experiments, we found that TcOYE specifically catalyzed one-electron reduction of menadione and ÎČ-lapachone to semiquinone-free radicals with concomitant generation of superoxide radical anions, while catalyzing solely the two-electron reduction of nifurtimox and 4-nitroquinoline-N-oxide drugs without free radical production. Interestingly, immunoprecipitation experiments revealed that anti-TcOYE polyclonal antibody abolished major reductase activities of the lysates toward these drugs, identifying TcOYE as a key drug-metabolizing enzyme by which quinone drugs have their mechanism of action

    On-off switch of charge-separated states of pyridine-vinylene-linked porphyrin-C60 conjugates detected by EPR

    Get PDF
    The design, synthesis, and electronic properties of a new series of D–π–A conjugates consisting of free base (H2P) and zinc porphyrins (ZnP) as electron donors and a fullerene (C60) as electron acceptor, in which the two electroactive entities are covalently linked through pyridine-vinylene spacers of different lengths, are described. Electronic interactions in the ground state were characterized by electrochemical and absorption measurements, which were further supported with theoretical calculations. Most importantly, charge-transfer bands were observed in the absorption spectra, indicating a strong push–pull behavior. In the excited states, electronic interactions were detected by selective photoexcitation under steady-state conditions, by time-resolved fluorescence investigations, and by pump probe experiments on the femto-, pico-, and nanosecond time scales. Porphyrin fluorescence is quenched for the different D–π–A conjugates, from which we conclude that the deactivation mechanisms of the excited singlet states are based on photoinduced energy- and/or electron transfer processes between H2P/ZnP and C60, mediated through the molecular spacers. The fluorescence intensity decreases and the fluorescence lifetimes shorten as the spacer length decreases and as the spacer substitution changes. With the help of transient absorption spectroscopy, the formation of charge-separated states involving oxidized H2P/ZnP and reduced C60 was confirmed. Lifetimes of the corresponding charge-separated states, which ranged from ∌400 picoseconds to 165 nanoseconds, depend on the spacer length, the spacer substitution, and the solvent polarity. Interestingly, D–π–A conjugates containing the longest linkers did not necessarily exhibit the longest charge-separated state lifetimes. The distances between the electron donors and the acceptors were calculated by molecular modelling. The longest charge-separated state lifetime corresponded to the D–π–A conjugate with the longest electron donor–acceptor distance. Likewise, EPR measurements in frozen media revealed charge separated states in all the D–π–A conjugates investigated. A sharp peak with g values ∌2.000 was assigned to reduced C60, while a broader, less intense signal (g ∌ 2.003) was assigned to oxidized H2P/ZnP. On–off switching of the formation and decay of the charge-separated states was detected by EPR at 77 K by repeatedly turning the irradiation source on and off

    Solution-Processed Bulk Heterojunction Solar Cells with Silyl End-Capped Sexithiophene

    Get PDF
    We fabricated solution-processed organic photovoltaic cells (OPVs) using substituted two sexithiophenes, a,w-bis(dimethyl-n-octylsilyl)sexithiophene (DSi-6T) and a,w-dihexylsexithiophene (DH-6T), as electron donors, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor. Solution-processed OPVs using DH-6T and DSi-6T showed good photovoltaic properties in spite of their poor solubility. The best performance was observed on DSi-6T : PCBM 1 : 5 (w/w) blend cell with an open circuit voltage (Voc) of 0.63 V, short circuit current density (Jsc) of 1.34 mA/cm2, fill factor (FF) of 55%, and power conversion efficiency of 0.44% under AM 1.5 G illumination. Although DH-6T has higher hole mobility than DSi-6T, the DSi-6T : PCBM blend cell showed higher hole mobility than DH-6T : PCBM cell. Therefore, DSi-6T cell showed higher device performance than DH-6T cell due to its silyl substitutions, which lead to the increase of the solubility. The incorporation of solution-processed TiO2 interfacial layer in the DSi-6T : PCBM devices significantly enhances FF due to the reduced charge recombination near active layer/Al interface

    Zinc Phthalocyanine−Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics and Photoelectrochemical Cell Preparation

    Get PDF
    Graphene exfoliation upon tip sonication in o-­‐DCB was accomplished. Then, covalent grafting of (2-­‐ aminoethoxy)(tri-­‐tert-­‐butyl) zinc phthalocyanine (ZnPc), to exfoliated graphene sheets was achieved. The newly formed ZnPc-­‐graphene hybrid material was found soluble in common organic solvents without any precipitation for several weeks. Application of diverse spectroscopic techniques verified the successful formation of ZnPc-­‐graphene hybrid materi-­‐ al, while thermogravimetric analysis revealed the amount of ZnPc loading onto graphene. Microscopy analysis based on AFM and TEM was applied to probe the morphological characteristics and to investigate the exfoliation of graphene sheets. Efficient fluorescence quenching of ZnPc in the ZnPc-­‐graphene hybrid material suggested that photoinduced events occur from the photoexcited ZnPc to exfoliated graphene. The dynamics of the photoinduced electron transfer was evaluated by femtosecond transient absorption spectroscopy, thus, revealing the formation of transient species such as ZnPc+ yielding the charge-­‐separated state ZnPc‱+–graphene‱–. Finally, the ZnPc-­‐graphene hybrid material was integrated into a photoactive electrode of an optical transparent electrode (OTE) cast with nanostructured SnO2 films (OTE/SnO2), which exhibited sta le and reproducible photocurrent responses and the incident photon-­‐to-­‐current conversion efficien-­‐ cy was determine

    Electron transfer: mechanisms and applications

    No full text

    Hydrogen Peroxide as Solar Fuel

    No full text
    • 

    corecore