16 research outputs found
SUMO化修飾システムはDNA 損傷部位におけるヒストンバリアントH2A.Z-2 の交換反応を促進する
広島大学(Hiroshima University)博士(医学)Doctor of Philosophy in Medical Sciencedoctora
Distinctive nuclear zone for RAD51-mediated homologous recombinational DNA repair
Genome-based functions are inseparable from the dynamic higher-order architecture of the cell nucleus. In this context, the repair of DNA damage is coordinated by precise spatiotemporal controls that target and regulate the repair machinery required to maintain genome integrity. However, the mechanisms that pair damaged DNA with intact template for repair by homologous recombination (HR) without illegitimate recombination remain unclear. This report highlights the intimate relationship between nuclear architecture and HR in mammalian cells. RAD51, the key recombinase of HR, forms spherical foci in S/G2 phases spontaneously. Using super-resolution microscopy, we show that following induction of DNA double-strand breaks RAD51 foci at damaged sites elongate to bridge between intact and damaged sister chromatids; this assembly occurs within bundle-shaped distinctive nuclear zones, requires interactions of RAD51 with various factors, and precedes ATP-dependent events involved the recombination of intact and damaged DNA. We observed a time-dependent transfer of single-stranded DNA overhangs, generated during HR, into such zones. Our observations suggest that RAD51-mediated homologous pairing during HR takes place within the distinctive nuclear zones to execute appropriate recombination
Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium.
Two-dimensional (2D) engineered nanomaterials are widely used in consumer and industrial goods due to their unique chemical and physical characteristics. Engineered nanomaterials are incredibly small and capable of being aerosolized during manufacturing, with the potential for biological interaction at first-contact sites such as the eye and lung. The unique properties of 2D nanomaterials that make them of interest to many industries may also cause toxicity towards epithelial cells. Using murine and human respiratory epithelial cell culture models, we tested the cytotoxicity of eight 2D engineered nanomaterials: graphene (110 nm), graphene oxide (2 um), graphene oxide (400 nm), reduced graphene oxide (2 um), reduced graphene oxide (400 nm), partially reduced graphene oxide (400 nm), molybdenum disulfide (400 nm), and hexagonal boron nitride (150 nm). Non-graphene nanomaterials were also tested in human corneal epithelial cells for ocular epithelial cytotoxicity. Hexagonal boron nitride was found to be cytotoxic in mouse tracheal, human alveolar, and human corneal epithelial cells. Hexagonal boron nitride was also tested for inhibition of wound healing in alveolar epithelial cells; no inhibition was seen at sub-cytotoxic doses. Nanomaterials should be considered with care before use, due to specific regional cytotoxicity that also varies by cell type. Supported by U01ES027288 and T32HL007013 and T32ES007059
Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20.
Several ubiquitin-binding zinc fingers (UBZs) have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ), a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment of a single ubiquitin to Rev1, a translesion DNA polymerase, increases binding of Rev1 to FAAP20. To clarify the specificity of FAAP20-UBZ, we determined the crystal structure of FAAP20-UBZ in complex with K63-linked diubiquitin at 1.9 Å resolution. In this structure, FAAP20-UBZ interacts only with one of the two ubiquitin moieties. Consistently, binding assays using surface plasmon resonance spectrometry showed that FAAP20-UBZ binds ubiquitin and M1-, K48- and K63-linked diubiquitin chains with similar affinities. Residues in the vicinity of Ala168 within the α-helix and the C-terminal Trp180 interact with the canonical Ile44-centered hydrophobic patch of ubiquitin. Asp164 within the α-helix and the C-terminal loop mediate a hydrogen bond network, which reinforces ubiquitin-binding of FAAP20-UBZ. Mutations of the ubiquitin-interacting residues disrupted binding to ubiquitin in vitro and abolished the accumulation of FAAP20 to DNA damage sites in vivo. Finally, structural comparison among FAAP20-UBZ, WRNIP1-UBZ and RAD18-UBZ revealed distinct modes of ubiquitin binding. UBZ family proteins could be divided into at least three classes, according to their ubiquitin-binding modes
Recommended from our members
Effect of graphene-based nanomaterials on corneal wound healing in vitro
Graphene-based nanomaterials (GBNs) are widely used due to their chemical and physical properties for multiple commercial and environmental applications. From an occupational health perspective, there is concern regarding the effects of inhalation on the respiratory system, and many studies have been conducted to study inhalation impacts on lung. Similar to the respiratory system, the eyes may also be exposed to GBNs and thus impacted. In this study, immortalized human corneal epithelial (hTCEpi) cells and rabbit corneal fibroblasts (RCFs) were used to investigate the toxicity of eight types of GBN: graphene oxide (GO; 400 nm), GO (1 μm), partially reduced graphene oxide (PRGO; 400 nm), reduced graphene oxide (RGO; 400 nm), RGO (2 μm), graphene (110 nm), graphene (140 nm), and graphene (1 μm). We next examined the effects of these GBNs on hTCEpi cell migration. We also determined whether the expression of α-smooth muscle actin (αSMA), a myofibroblast marker, is altered by the GBNs using RCFs. We found that RGO (400 nm) and RGO (2 μm) were highly toxic to hTCEPi cells and RCFs meanwhile, PRGO (400 nm) was toxic only to hTCEpi cells. In addition, PRGO (400 nm), RGO (400 nm), and RGO (2 μm) inhibited hTCEpi cell migration and significantly increased αSMA mRNA expression. Further study in vivo is required to determine if RGO nanomaterials delay corneal epithelial healing and induce scar formation
Metal Oxide Engineered Nanomaterials Modulate Rabbit Corneal Fibroblast to Myofibroblast Transformation.
PurposeCorneal keratocyte-fibroblast-myofibroblast (KFM) transformation plays a critical role in corneal stromal wound healing. However, the impact of engineered nanomaterials (ENMs), found in an increasing number of commercial products, on this process is poorly studied. This study investigates the effects of metal oxide ENMs on KFM transformation in vitro and in vivo.MethodsCell viability of rabbit corneal fibroblasts (RCFs) was tested following treatment with 11 metal oxide ENMs at concentrations of 0.5 to 250 µg/ml for 24 hours. Messenger RNA (mRNA) and protein expression of αSMA, a marker of myofibroblast transformation, were measured using RCFs after exposure to 11 metal oxide ENMs at a concentration that did not affect cell viability, in media containing either 0 or 10 ng/ml of TGF-β1. Additionally, the effect of topical Fe2O3 nanoparticles (NPs) (50 ng/ml) on corneal stromal wound healing following phototherapeutic keratectomy (PTK) was determined.ResultsV2O5, Fe2O3, CuO, and ZnO ENMs were found to significantly reduce cell viability as compared to vehicle control and the other seven metal oxide ENMs tested. V2O5 nanoflakes significantly reduced mRNA and protein αSMA concentrations in the presence of TGF-β1. Fe2O3 NPs significantly increased αSMA mRNA expression in the presence of TGF-β1 but did not alter αSMA protein expression. Topically applied Fe2O3 NPs in an in vivo rabbit corneal stromal wound healing model did not delay healing.ConclusionsFe2O3 NPs promote corneal myofibroblast induction in vitro but do not impair corneal stromal wound healing in vivo.Translational relevanceThese experimental results can apply to human nanomedical research
Ub recognition by FAAP20-UBZ.
<p>The coloring scheme is the same as that in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0120887#pone.0120887.g001" target="_blank">Fig. 1</a>. (A) Hydrophobic interactions between FAAP20-UBZ and Ub. (B) Hydrogen bond network between FAAP20-UBZ and Ub. (C) Schematic representation of the interface between FAAP20-UBZ and Ub. Hydrophobic interactions are displayed as dashed red lines.</p