67 research outputs found

    On the Performance Evaluation of Action Recognition Models on Transcoded Low Quality Videos

    Full text link
    In the design of action recognition models, the quality of videos in the dataset is an important issue, however the trade-off between the quality and performance is often ignored. In general, action recognition models are trained and tested on high-quality videos, but in actual situations where action recognition models are deployed, sometimes it might not be assumed that the input videos are of high quality. In this study, we report qualitative evaluations of action recognition models for the quality degradation associated with transcoding by JPEG and H.264/AVC. Experimental results are shown for evaluating the performance of pre-trained models on the transcoded validation videos of Kinetics400. The models are also trained on the transcoded training videos. From these results, we quantitatively show the degree of degradation of the model performance with respect to the degradation of the video quality.Comment: 10 page

    Rapid Formation of Cerebral Microbleeds after Carotid Artery Stenting

    Get PDF
    Background: Recent studies reported that cerebral microbleeds (CMBs), i.e. small areas of signal loss on T2*-weighted gradient-echo (GE) imaging, could develop rapidly after acute ischemic stroke. We hypothesized that CMBs rapidly emerge after carotid artery stenting (CAS). Objective: We investigated the frequency of and predisposing factors for CMBs after CAS. Methods: We retrospectively examined MRI before and after CAS in 88 consecutive patients (average age: 71.7 ± 7.2 years, average rates of carotid stenosis: 72.6 ± 12.8%) who underwent CAS for carotid artery stenosis between March 1, 2009, and September 30, 2010. We defined new CMBs as signal losses that newly appeared on the follow-up GE. We examined the association of new CMBs with demographics, risk factors, and baseline MBs. Results: Among 88 patients, 18 (20.5%) had CMBs initially, and 7 (8.0%) developed new CMBs right after CAS. New CMBs appeared on the same side of CAS in all of the 7 patients. New CMBs appeared significantly more frequently in the CMB-positive group than in the CMB-negative one (22% vs. 4%, p = 0.03) on the pre-CAS MRI. Multivariate analysis also revealed that the presence of CMBs before CAS was an independent predictor of new development of CMBs after CAS (odds ratio: 8.09, 95% confidence interval: 1.39–47.1). Conclusion: CMBs can develop rapidly after CAS, especially in patients with pre-existing CMBs. Since the existence of CMBs prior to CAS suggests a latent vascular damage which is vulnerable to hemodynamic stress following CAS, particular attention should be paid to the prevention of intracerebral hemorrhage due to hyperperfusion after CAS

    Odorant Concentration Differentiator for Intermittent Olfactory Signals

    Get PDF
    Animals need to discriminate differences in spatiotemporally distributed sensory signals in terms of quality as well as quantity for generating adaptive behavior. Olfactory signals characterized by odor identity and concentration are intermittently distributed in the environment. From these intervals of stimulation, animals process odorant concentration to localize partners or food sources. Although concentration–response characteristics in olfactory neurons have traditionally been investigated using single stimulus pulses, their behavior under intermittent stimulus regimens remains largely elusive. Using the silkmoth (Bombyx mori) pheromone processing system, a simple and behaviorally well-defined model for olfaction, we investigated the neuronal representation of odorant concentration upon intermittent stimulation in the naturally occurring range. To the first stimulus in a series, the responses of antennal lobe (AL) projection neurons (PNs) showed a concentration dependence as previously shown in many olfactory systems. However, PN response amplitudes dynamically changed upon exposure to intermittent stimuli of the same odorant concentration and settled to a constant, largely concentration-independent level. As a result, PN responses emphasized odorant concentration changes rather than encoding absolute concentration in pulse trains of stimuli. Olfactory receptor neurons did not contribute to this response transformation which was due to long-lasting inhibition affecting PNs in the AL. Simulations confirmed that inhibition also provides advantages when stimuli have naturalistic properties. The primary olfactory center thus functions as an odorant concentration differentiator to efficiently detect concentration changes, thereby improving odorant source orientation over a wide concentration range.UTokyo Research掲載「匂いの濃度を効率的に表現する脳の計算メカニズムの発見」 URI: http://www.u-tokyo.ac.jp/ja/utokyo-research/research-news/a-novel-neuronal-mechanism-to-efficiently-code-odorant-concentration/UTokyo Research "A novel neuronal mechanism to efficiently code odorant concentration" URI: http://www.u-tokyo.ac.jp/en/utokyo-research/research-news/a-novel-neuronal-mechanism-to-efficiently-code-odorant-concentration

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF
    corecore