279 research outputs found

    Trace anomaly as signature of conformality in neutron stars

    Full text link
    We discuss an interpretation that a peak in the sound velocity in neutron star matter, as suggested by the observational data, signifies strongly-coupled conformal matter. The normalized trace anomaly is a dimensionless measure of conformality leading to the derivative and the non-derivative contributions to the sound velocity. We find that the peak in the sound velocity is attributed to the derivative contribution from the trace anomaly that steeply approaches the conformal limit. Smooth continuity to the behavior of high-density QCD implies that the matter part of the trace anomaly may be positive definite. We discuss a possible implication of the positivity condition of the trace anomaly on the MM-RR relation of the neutron stars.Comment: 6 pages, 3 figure

    Trends in the incidence and mortality of legionellosis in Japan: a nationwide observational study, 1999-2017

    Get PDF
    This study examined temporal trend, seasonality, and geographical variations of legionellosis incidence and mortality in Japan. This nationwide observational study used the Japanese Vital Statistics and Infectious Diseases Weekly Report (1999-2017) data to calculate legionellosis crude and age-adjusted incidence and mortality rates per 100,000 population by age and sex. Incidence was compared among the 4 seasons and regional incidence among 47 prefectures. Of 13,613 (11,194 men) people with legionellosis in Japan, 725 (569 men) were fatal. Increasing incidence trend occurred from 0.0004 (1999) to 1.37 (2017) per 100,000 population. People aged >= 70 years accounted for 43.1% overall; men's age-adjusted incidence rate was consistently approximately five times higher than for women. Significantly higher incidence occurred in summer than in winter (p=0.013). Geographically, highest incidence (>= 2.0 per 100,000 population) occurred in Hokuriku District, with increasing trends in Hokkaido and middle-part of Japan. Estimated fatality rates decreased consistently at 5.9% (95% confidence interval: - 8.1, - 3.5) annually, from 1999 to 2017, with no trend change point. Increasing legionellosis incidence occurred in Japan during 1999-2017, with declining estimated fatality rates. In this aging society and warming world, disease clinical burden may further deteriorate in future due to increasing incidence trends

    Pedometer-Determined Physical Activity Among Youth in the Tokyo Metropolitan Area: A Cross-Sectional Study

    Get PDF
    Background Providing large-scale descriptive data of objectively measured physical activity in youth is informative for practitioners, epidemiologists, and researchers. The purpose of this study was to present the pedometer-determined physical activity among Japanese youth using the Tokyo Metropolitan Survey of Physical Fitness, Physical Activity and Lifestyle 2011. Methods This study used a school-based survey. The Tokyo Metropolitan Board of Education originally collected pedometer-determined steps per day in the fall of 2011. Data were collected from 15,471 youth aged 6 to 18 years living in Tokyo. Participants were asked to wear pedometers for 14 consecutive days, and daily steps logged in the final 7 days were selected for this analysis. Results At the primary and junior high school levels, boys (12,483 and 9476, respectively) had a significantly higher mean number of steps per day than did girls (10,053 and 8408, respectively). There was no significant difference in the mean number of steps per day between the sexes at the high school level. Mean steps per day decreased consistently with age and grade level; the lowest overall steps per day was observed in the last year of junior high school, although there was a slight increase in the subsequent year, the first year of high school. Conclusions This study demonstrates a trend toward reduced physical activity with age in Japanese youth and a substantial difference in the number of steps per day between boys and girls in Tokyo. The age-related reduction in steps per day was greater in boys because they attained a higher peak value prior to this reduction, and sex-related differences in the step count disappeared in high school students

    Localized laccase activity modulates distribution of lignin polymers in gymnosperm compression wood

    Get PDF
    The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood

    A computational framework for bioimaging simulation

    Full text link
    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.Comment: 57 page
    corecore