84 research outputs found
Clinical significance of the expression of connexin26 in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Connexin26 (Cx26) is one of the connexins (Cxs) family members which form gap junction channels. Cx26 is considered to be a tumor suppressor gene. However, recent studies revealed that over expression of Cx26 is associated with a poor prognosis in several human cancers. This study investigated the correlation between Cx26 expression and the clinicopathological features and P53 expression in colorectal cancer.</p> <p>Methods</p> <p>One hundred and fifty-three patients who underwent a curative resection were studied. Tissue samples were investigated by immunohistochemical staining using antibodies for Cx26 and P53. Moreover, apoptotic cells were detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) staining.</p> <p>Results</p> <p>Cx26 expression was found in 83 cases (54.2%) and P53 expression in 71 cases (46.4%). A correlation was observed between the Cx26 expression and recurrence, histology, and p53 expression (P < 0.05). Cx26 positive tumors had significantly longer survival than Cx26 negative tumors (P < 0.05). A multivariate Cox analysis demonstrated that Cx26 expression was an independent prognostic factor (P < 0.05). However, no significant correlation was observed between Cx26 and AI.</p> <p>Conclusion</p> <p>This study suggests that Cx26 expression is an independent prognostic factor in patients that undergo a curative resection of colorectal cancer.</p
Antisense RNA transcripts in the blood may be novel diagnostic markers for colorectal cancer
Numerous genetic studies have been conducted regarding the occurrence of colorectal cancer (CRC) and the prognosis using microarrays. However, adequate investigations into the diagnostic application of microarrays have yet to be performed. The simplicity and accuracy of diagnosis and prognosis tracking are important requirements for its processes, and the use of blood cells for diagnosis is considered to be suitable to meet these requirements. The patients involved in the study were 28 preoperative patients with CRC and 6 healthy individuals who served as controls. RNA was extracted from the blood cells of the patients and analyzed using a sense/antisense RNA custom microarray. In the patients with CRC, the expression levels of 20 sense RNA and 20 antisense RNA species were identified as being significantly altered compared with that of the healthy volunteers (P2.0). Cluster analysis of these RNA species revealed that the top 10 antisense RNAs significantly clustered patients with cancer and healthy individuals separately. Patients with stage I or II CRC exhibited significant changes in the expression levels of 33 sense and 39 antisense RNA species, as compared with healthy volunteers (P2.0). Cluster analysis demonstrated that patients with stage I or II CRC and healthy volunteers formed separate clusters only among the top 20 antisense RNA species. A tracking study of expression levels of haloacid dehalogenase‑like hydrolase domain‑containing 1 (HDHD1) antisense RNA was performed and a significant difference was identified between the CRC and healthy groups revealing that the levels at one week and three months following surgical removal of the cancerous tissue, decreased to almost same levels of the healthy individuals. The results of the current study indicate that HDHD1 antisense RNA may serve as a potential biomarker for the prognosis of CRC
The Effect of Three-Dimensional Preoperative Simulation on Liver Surgery
BackgroundIn the past decade, three-dimensional (3D) simulation has been commonly used for liver surgery. However, few studies have analyzed the usefulness of this 3D simulation. The aim of this study was to evaluate the effect of 3D simulation on the outcome of liver surgery.MethodsWe retrospectively analyzed 240 consecutive patients who underwent liver resection. The patients were divided into two groups: those who received 3D preoperative simulation (“3D group”, n = 120) and those who did not undergo 3D preoperative simulation (“without 3D group”, n = 120). The perioperative outcomes, including operation time, blood loss, maximum aspartate transaminase level, length of postoperative stay, postoperative complications and postoperative mortality, were compared between the two groups. The predicted resected liver volume was compared with the actual resected volume.ResultsThe median operation time for the 3D group was 36 min shorter than that for the without 3D group (P = 0.048). There were no significant differences in other outcomes between the two groups. A subgroup analysis revealed that the operation time of repeated hepatectomy and segmentectomy for the 3D group was shorter than that for the without 3D group (P = 0.03). There was a strong correlation between the predicted liver volume and the actual resected liver weight (r = 0.80, P < 0.001).ConclusionThese findings demonstrate that 3D preoperative simulation may reduce the operation time, particularly for repeated hepatectomy and segmentectomy
Long-term treatment with hyperbaric air improves hyperlipidemia of db/db mice
Hyperbaric air (HBA) is used to improve healing of wounds including diabetic
ulcer. The aim of this study was to clarify the effects of HBA exposure on lipid and glucose
metabolism in db/db mice. HBA did not influence the weight of db/db mice. Serum
levels of free fatty acid and triglyceride, but not glucose and insulin, were significantly
decreased after 6 weeks of treatment with HBA. The mRNA expressions of CPT-1, PPARα
and PGC-1α genes, which are related to lipid metabolism, were significantly up-regulated
in the muscle and liver. Increases in TNFα and MCP1 mRNA, which impaired lipid metabolism,
were also attenuated by HBA treatment. These results suggest that exposure
of HBA could have beneficial effects on lipid metabolism in patients with type 2 diabetes
mellitus
Diagnosis of Myocardial Viability by Fluorodeoxyglucose Distribution at the Border Zone of a Low Uptake Region
Purpose: In cardiac 2-[F-18]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) examination, interpretation of myocardial viability in the low uptake region (LUR) has been difficult without additional perfusion imaging. We evaluated distribution patterns of FDG at the border zone of the LUR in the cardiac FDG-PET and established a novel parameter for diagnosing myocardial viability and for discriminating the LUR of normal variants. Materials and Methods: Cardiac FDG-PET was performed in patients with a myocardial ischemic event (n = 22) and in healthy volunteers (n = 22). Whether the myocardium was not a viable myocardium (not-VM) or an ischemic but viable myocardium (isch-VM) was defined by an echocardiogram under a low dose of dobutamine infusion as the gold standard. FDG images were displayed as gray scaled-bull’s eye mappings. FDG-plot profiles for LUR ( = true ischemic region in the patients or normal variant region in healthy subjects) were calculated. Maximal values of FDG change at the LUR border zone (a steepness index; Smax scale/pixel) were compared among not-VM, isch-VM, and normal myocardium. Results: Smax was significantly higher for n-VM compared to those with isch-VM or normal myocardium (ANOVA). A cut-off value of 0.30 in Smax demonstrated 100 % sensitivity and 83 % specificity for diagnosing n-VM and isch-VM. Smax less than 0.23 discriminated LUR in normal myocardium from the LUR in patients with both n-VM and isch-VM with a 94 % sensitivity and a 93 % specificity. Conclusion: Smax of the LUR in cardiac FDG-PET is a simple and useful parameter to diagnose n-VM and isch
Feasibility Study of Technology Demonstration Mission for Integrated Attitude-Orbit Control of Solar Sail
We are developing a micro solar sail called PIERIS . The purpose of this project is to demonstrate the following two world-first technologies in Low Earth Orbit. The first technology is to control the external torque with a single gimbal motor. It will be possible to achieve a completely propellant-free Integrated Attitude-Orbit Control. The second technology is a sail structure that guarantees the accuracy of the Pyramid-Shaped sail membrane shape and reduces disturbance torque caused by membrane surface deformation. This project has been selected for the Feasibility-Study phase of the JAXA Small Satellite Rush Program and is scheduled for launch in FY2026 if approved to proceed to the next phase. We are currently conducting mission and system feasibility studies and developing a Bread Board Model
Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation
AIM: To develop a novel 3-dimensional (3D) virtual hepatectomy simulation software, Liversim, to visualize the real-time deformation of the liver.METHODS: We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions: viewing 3D models from arbitrary directions, changing the colors and opacities of the models, deforming the models based on user interaction, and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013, 99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013, 11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim was used. Furthermore, medical students and surgical residents were asked to complete questionnaires regarding the new software.RESULTS: There were no obvious discrepancies (i.e., the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min (range, 110 to 846) in the VINCENT group and 397 min (range, 232 to 497) in the Liversim group (P = 0.30). The median amount of intraoperative bleeding was 510 mL (range, 18 to 5120) in the VINCENT group and 470 mL (range, 130 to 1600) in the Liversim group (P = 0.44). The median postoperative stay was 12 d (range, 6 to 100) in the VINCENT group and 13 d (range, 9 to 21) in the Liversim group (P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically inferior to SYNAPSE VINCENT. Both students and surgical residents reported that the Liversim image was almost the same as the actual hepatectomy.CONCLUSION: Virtual hepatectomy with real-time deformation of the liver using Liversim is useful for the safe performance of hepatectomies and for surgical education
Sphingosine 1-phosphate has anti-apoptotic effect on liver sinusoidal endothelial cells and proliferative effect on hepatocytes in a paracrine manner in human
AimSphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite released from erythrocytes and platelets, and is a potent stimulus for endothelial cell proliferation. However, the role of S1P on human liver sinusoidal endothelial cells (LSEC) remains unclear. The proliferation and inhibition of apoptosis in LSEC are involved in the promotion of liver regeneration and the suppression of liver injury after liver resection and transplantation. The aim of this study is to investigate the role of S1P on human LSEC and the interaction between S1P and LSEC in hepatocyte proliferation in vitro.MethodsImmortalized human LSEC were used. LSEC were cultured with S1P, and the cell proliferation, anti-apoptosis, signal transductions and production of cytokines and growth factors were subsequently examined. To investigate the interaction between S1P and LSEC in hepatocyte proliferation, primary human hepatocytes were cultured with the supernatants of LSEC with and without S1P. DNA synthesis and signal transductions in hepatocytes were examined.ResultsS1P induced LSEC proliferation through activation of Akt and extracellular signal-related kinase pathways and suppressed LSEC apoptosis by affecting the expression levels of Bcl-2, Bax and cleaved caspase-3. S1P promoted interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) production in LSEC. The supernatants of LSEC cultured with S1P enhanced hepatocyte DNA synthesis more strongly than the supernatants of LSEC cultured without S1P through activation of the signal transducer and activator of transcription-3 pathway.ConclusionS1P has proliferative and anti-apoptotic effects and promotes the production of IL-6 and VEGF in human LSEC, thereby promoting hepatocyte proliferation
- …