1,571 research outputs found
Breathing Oscillations in Bose - Fermi Mixing Gases with Yb atoms in the Largely Prolate Deformed Traps
We study the breathing oscillations in bose-fermi mixtures with Yb isotopes
in the largely prolate deformed trap, which are realized by Kyoto group. We
choose the three combinations of the Yb isotopes, Yb170-Yb171, Yb170-Yb173 and
Yb174-Yb173, whose boson-fermion interactions are weakly repulsive, strongly
attractive and strongly repulsive. The collective oscillations in the deformed
trap are calculated in the dynamical time-development approach, which is
formulated with the time-dependent Gross-Pitaevskii and the Vlasov equations.
We analyze the results in the time-development approach with the intrinsic
oscillation modes of the deformed system, which are obtained using the scaling
method, and show that the damping and forced-oscillation effects of the
intrinsic modes give time-variation of oscillations, especially, in the fermion
transverse mode.Comment: 27 pages, 12 figure
A practice-related risk score (PRS): a DOPPS-derived aggregate quality index for haemodialysis facilities
Background. The Dialysis Outcomes and Practice Patterns Study (DOPPS) database was used to develop and validate a practice-related risk score (PRS) based on modifiable practices to help facilities assess potential areas for improving patient care.
Methods. Relative risks (RRs) from a multivariable Cox mortality model, based on observational haemodialysis (HD) patient data from DOPPS I (1996-2001, seven countries), were used. The four practices were the percent of patients with Kt/V >= 1.2, haemoglobin >= 11 g/dl (110 g/l), albumin >= 4.0 g/dl (40g/l) and catheter use, and were significantly related to mortality when modelled together. DOPPS II data (2002-2004, 12 countries) were used to evaluate the relationship between PRS and mortality risk using Cox regression.
Results. For facilities in DOPPS I and II, changes in PRS over time were significantly correlated with changes in the standardized mortality ratio (SMR). The PRS ranged from 1.0 to 2.1. Overall, the adjusted RR of death was 1.05 per 0.1 points higher PRS (P < 0.0001). For facilities in both DOPPS I and II (N = 119), a 0.2 decrease in PRS was associated with a 0.19 decrease in SMR (P = 0.005). On average, facilities that improved PRS practices showed significantly reduced mortality over the same time frame.
Conclusions. The PRS assesses modifiable HD practices that are linked to improved patient survival. Further refinements might lead to improvements in the PRS and will address regional variations in the PRS/mortality relationship
Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse
BACKGROUND: Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. RESULTS: cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. CONCLUSION: The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector
Simulation of the many-body dynamical quantum Hall effect in an optical lattice
We propose an experimental scheme to simulate the many-body dynamical quantum
Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice.
We first show that the required model Hamiltonian of a spin-1/2 Heisenberg
chain with an effective magnetic field and tunable parameters can be realized
in this system. For dynamical response to ramping the external fields, the
quantized plateaus emerge in the Berry curvature of the interacting atomic spin
chain as a function of the effective spin-exchange interaction. The
quantization of this response in the parameter space with the
interaction-induced topological transition characterizes the many-body
dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon
can be observed in practical cold-atom experiments with numerical simulations.Comment: 8 pages, 3 figures; accepted in Quantum Information Processin
Death, dying and informatics: misrepresenting religion on MedLine
BACKGROUND: The globalization of medical science carries for doctors worldwide a correlative duty to deepen their understanding of patients' cultural contexts and religious backgrounds, in order to satisfy each as a unique individual. To become better informed, practitioners may turn to MedLine, but it is unclear whether the information found there is an accurate representation of culture and religion. To test MedLine's representation of this field, we chose the topic of death and dying in the three major monotheistic religions. METHODS: We searched MedLine using PubMed in order to retrieve and thematically analyze full-length scholarly journal papers or case reports dealing with religious traditions and end-of-life care. Our search consisted of a string of words that included the most common denominations of the three religions, the standard heading terms used by the National Reference Center for Bioethics Literature (NRCBL), and the Medical Subject Headings (MeSH) used by the National Library of Medicine. Eligible articles were limited to English-language papers with an abstract. RESULTS: We found that while a bibliographic search in MedLine on this topic produced instant results and some valuable literature, the aggregate reflected a selection bias. American writers were over-represented given the global prevalence of these religious traditions. Denominationally affiliated authors predominated in representing the Christian traditions. The Islamic tradition was under-represented. CONCLUSION: MedLine's capability to identify the most current, reliable and accurate information about purely scientific topics should not be assumed to be the same case when considering the interface of religion, culture and end-of-life care
Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse
BACKGROUND: Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. RESULTS: cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. CONCLUSION: The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector
Microscopic observation of magnon bound states and their dynamics
More than eighty years ago, H. Bethe pointed out the existence of bound
states of elementary spin waves in one-dimensional quantum magnets. To date,
identifying signatures of such magnon bound states has remained a subject of
intense theoretical research while their detection has proved challenging for
experiments. Ultracold atoms offer an ideal setting to reveal such bound states
by tracking the spin dynamics after a local quantum quench with single-spin and
single-site resolution. Here we report on the direct observation of two-magnon
bound states using in-situ correlation measurements in a one-dimensional
Heisenberg spin chain realized with ultracold bosonic atoms in an optical
lattice. We observe the quantum walk of free and bound magnon states through
time-resolved measurements of the two spin impurities. The increased effective
mass of the compound magnon state results in slower spin dynamics as compared
to single magnon excitations. In our measurements, we also determine the decay
time of bound magnons, which is most likely limited by scattering on thermal
fluctuations in the system. Our results open a new pathway for studying
fundamental properties of quantum magnets and, more generally, properties of
interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure
Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms
Fermionic alkaline-earth atoms have unique properties that make them
attractive candidates for the realization of novel atomic clocks and degenerate
quantum gases. At the same time, they are attracting considerable theoretical
attention in the context of quantum information processing. Here we demonstrate
that when such atoms are loaded in optical lattices, they can be used as
quantum simulators of unique many-body phenomena. In particular, we show that
the decoupling of the nuclear spin from the electronic angular momentum can be
used to implement many-body systems with an unprecedented degree of symmetry,
characterized by the SU(N) group with N as large as 10. Moreover, the interplay
of the nuclear spin with the electronic degree of freedom provided by a stable
optically excited state allows for the study of spin-orbital physics. Such
systems may provide valuable insights into strongly correlated physics of
transition metal oxides, heavy fermion materials, and spin liquid phases.Comment: 15 pages, 10 figures. V2: extended experimental accessibility and
Kondo sections in the main text (including new Fig. 5b) and in the Methods;
reorganized other parts; added reference
- …