18 research outputs found
Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms
Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms
Anti-citrullinated peptide antibodies are the strongest predictor of clinically relevant radiographic progression in rheumatoid arthritis patients achieving remission or low disease activity: A post hoc analysis of a nationwide cohort in Japan
Objectives: To determine prognostic factors of clinically relevant radiographic progression (CRRP) in patients with rheumatoid arthritis (RA) achieving remission or low disease activity (LDA) in clinical practice. Methods: Using data from a nationwide, multicenter, prospective study in Japan, we evaluated 198 biological disease-modifying antirheumatic drug (bDMARD)-naive RA patients who were in remission or had LDA at study entry after being treated with conventional synthetic DMARDs (csDMARDs). CRRP was defined as the yearly progression of modified total Sharp score (mTSS) >3.0 U. We performed a multiple logistic regression analysis to explore the factors to predict CRRP at 1 year. We used receiver operating characteristic (ROC) curve to estimate the performance of relevant variables for predicting CRRP. Results: The mean Disease Activity Score in 28 joints-erythrocyte sedimentation rate (DAS28-ESR) was 2.32-0.58 at study entry. During the 1-year observation, remission or LDA persisted in 72% of the patients. CRRP was observed in 7.6% of the patients. The multiple logistic regression analysis revealed that the independent variables to predict the development of CRRP were: anti-citrullinated peptide antibodies (ACPA) positivity at baseline (OR = 15.2, 95%CI 2.64-299), time-integrated DAS28-ESR during the 1 year post-baseline (7.85-unit increase, OR = 1.83, 95%CI 1.03-3.45), and the mTSS at baseline (13-unit increase, OR = 1.22, 95% CI 1.06-1.42). Conclusions: ACPA positivity was the strongest independent predictor of CRRP in patients with RA in remission or LDA. Physicians should recognize ACPA as a poor-prognosis factor regarding the radiographic outcome of RA, even among patients showing a clinically favorable response to DMARDs
Gliese 12 b: A Temperate Earth-sized Planet at 12 pc Ideal for Atmospheric Transmission Spectroscopy
Recent discoveries of Earth-sized planets transiting nearby M dwarfs have made it possible to characterize the atmospheres of terrestrial planets via follow-up spectroscopic observations. However, the number of such planets receiving low insolation is still small, limiting our ability to understand the diversity of the atmospheric composition and climates of temperate terrestrial planets. We report the discovery of an Earth-sized planet transiting the nearby (12 pc) inactive M3.0 dwarf Gliese 12 (TOI-6251) with an orbital period (P orb) of 12.76 days. The planet, Gliese 12 b, was initially identified as a candidate with an ambiguous P orb from TESS data. We confirmed the transit signal and P orb using ground-based photometry with MuSCAT2 and MuSCAT3, and validated the planetary nature of the signal using high-resolution images from Gemini/NIRI and Keck/NIRC2 as well as radial velocity (RV) measurements from the InfraRed Doppler instrument on the Subaru 8.2 m telescope and from CARMENES on the CAHA 3.5 m telescope. X-ray observations with XMM-Newton showed the host star is inactive, with an X-ray-to-bolometric luminosity ratio of logLX/Lbolââ5.7 . Joint analysis of the light curves and RV measurements revealed that Gliese 12 b has a radius of 0.96 ± 0.05 R â, a 3Ï mass upper limit of 3.9 M â, and an equilibrium temperature of 315 ± 6 K assuming zero albedo. The transmission spectroscopy metric (TSM) value of Gliese 12 b is close to the TSM values of the TRAPPIST-1 planets, adding Gliese 12 b to the small list of potentially terrestrial, temperate planets amenable to atmospheric characterization with JWST