164 research outputs found

    Single Sarcomere Imaging by Quantum Dots (Qdots) in the Heart

    Get PDF

    Titin and Troponin: Central Players in the Frank-Starling Mechanism of the Heart

    Get PDF
    The basis of the Frank-Starling mechanism of the heart is the intrinsic ability of cardiac muscle to produce greater active force in response to stretch, a phenomenon known as length-dependent activation. A feedback mechanism transmitted from cross-bridge formation to troponin C to enhance Ca2+ binding has long been proposed to account for length-dependent activation. However, recent advances in muscle physiology research technologies have enabled the identification of other factors involved in length-dependent activation. The striated muscle sarcomere contains a third filament system composed of the giant elastic protein titin, which is responsible for most passive stiffness in the physiological sarcomere length range. Recent studies have revealed a significant coupling of active and passive forces in cardiac muscle, where titin-based passive force promotes cross-bridge recruitment, resulting in greater active force production in response to stretch. More currently, the focus has been placed on the troponin-based “on-off” switching of the thin filament state in the regulation of length-dependent activation. In this review, we discuss how myocardial length-dependent activation is coordinately regulated by sarcomere proteins

    ラット大脳皮質における電位オシレーターを駆動するための状況に応じた戦略

    Get PDF
    Information integration in the brain requires functional connectivity between local neural networks. Here, we investigated the interregional coupling mechanism from the viewpoint of oscillations using optical recording methods. Low-frequency electrical stimulation of rat neocortical slices in a caffeine-containing medium induced oscillatory activity between the primary visual cortex (Oc1) and medial secondary visual cortex (Oc2M), in which the oscillation generator was located in the Oc2M and was triggered by a feedforward signal. During to-and-fro oscillatory activity, neural excitation was marked in layer II/III. When the upper layer was disrupted between Oc1 and Oc2M, feedforward signals could propagate through the deep layer and switch on the oscillator in the Oc2M. When the lower layer was disrupted between Oc1 and Oc2M, feedforward signals could propagate through the upper layer and switch on the oscillator in the Oc2M. In the backward direction, neither the upper layer cut nor the lower layer cut disrupted the propagation of the oscillations. In all cases, the horizontal and vertical pathways were used as needed. Fluctuations in the oscillatory waveforms of the local field potential at the upper and lower layers in the Oc2M were reversed, suggesting that the oscillation originated between the two layers. Thus, the neocortex may work as a safety device for interregional communications in an alternative way to drive voltage oscillators in the neocortex

    Relationships between feeding behaviors and emotions : an electroencephalogram (EEG) frequency analysis study

    Get PDF
    Feeding behaviors may be easily affected by emotions, both being based on brain activity; however, the relationships between them have not been explicitly defined. In this study, we investigated how emotional environments modulate subjective feelings, brain activity, and feeding behaviors. Electroencephalogram (EEG) recordings were obtained from healthy participants in conditions of virtual comfortable space (CS) and uncomfortable space (UCS) while eating chocolate, and the times required for eating it were measured. We found that the more participants tended to feel comfortable under the CS, the more it took time to eat in the UCS. However, the EEG emergence patterns in the two virtual spaces varied across the individuals. Upon focusing on the theta and low-beta bands, the strength of the mental condition and eating times were found to be guided by these frequency bands. The results determined that the theta and low-beta bands are likely important and relevant waves for feeding behaviors under emotional circumstances, following alterations in mental conditions

    Outer Membrane Vesicles of Helicobacter pylori TK1402 are Involved in Biofilm Formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Helicobacter pylori </it>forms biofilms on glass surfaces at the air-liquid interface in <it>in vitro </it>batch cultures; however, biofilms of <it>H. pylori </it>have not been well characterized. In the present study, we analyzed the ability of <it>H. pylori </it>strains to form biofilms and characterized the underlying mechanisms of <it>H. pylori </it>biofilm formation.</p> <p>Results</p> <p>Strain TK1402 showed strong biofilm forming ability relative to the other strains in Brucella broth supplemented with 7% FCS. The strong biofilm forming ability of TK1402 is reflected the relative thickness of the biofilms. In addition, outer membrane vesicles (OMV) were detected within the matrix of only the TK1402 biofilms. Biofilm formation was strongly correlated with the production of OMV in this strain. We further observed that strain TK1402 did not form thick biofilms in Brucella broth supplemented with 0.2% β-cyclodextrin. However, the addition of the OMV-fraction collected from TK1402 could enhance biofilm formation.</p> <p>Conclusion</p> <p>The results suggested that OMV produced from TK1402 play an important role in biofilm formation in strain TK1402.</p

    Troponin and Titin Coordinately Regulate Length-dependent Activation in Skinned Porcine Ventricular Muscle

    Get PDF
    We investigated the molecular mechanism by which troponin (Tn) regulates the Frank-Starling mechanism of the heart. Quasi-complete reconstitution of thin filaments with rabbit fast skeletal Tn (sTn) attenuated length-dependent activation in skinned porcine left ventricular muscle, to a magnitude similar to that observed in rabbit fast skeletal muscle. The rate of force redevelopment increased upon sTn reconstitution at submaximal levels, coupled with an increase in Ca2+ sensitivity of force, suggesting the acceleration of cross-bridge formation and, accordingly, a reduction in the fraction of resting cross-bridges that can potentially produce additional active force. An increase in titin-based passive force, induced by manipulating the prehistory of stretch, enhanced length-dependent activation, in both control and sTn-reconstituted muscles. Furthermore, reconstitution of rabbit fast skeletal muscle with porcine left ventricular Tn enhanced length-dependent activation, accompanied by a decrease in Ca2+ sensitivity of force. These findings demonstrate that Tn plays an important role in the Frank-Starling mechanism of the heart via on–off switching of the thin filament state, in concert with titin-based regulation

    Sarcomere length-dependent Ca2+ activation in skinned rabbit psoas muscle fibers: coordinated regulation of thin filament cooperative activation and passive force

    Get PDF
    In skeletal muscle, active force production varies as a function of sarcomere length (SL). It has been considered that this SL dependence results simply from a change in the overlap length between the thick and thin filaments. The purpose of this study was to provide a systematic understanding of the SL-dependent increase in Ca2+ sensitivity in skeletal muscle, by investigating how thin filament “on–off” switching and passive force are involved in the regulation. Rabbit psoas muscles were skinned, and active force measurements were taken at various Ca2+ concentrations with single fibers, in the short (2.0 and 2.4 μm) and long (2.4 and 2.8 μm) SL ranges. Despite the same magnitude of SL elongation, the SL-dependent increase in Ca2+ sensitivity was more pronounced in the long SL range. MgADP (3 mM) increased the rate of rise of active force and attenuated SL-dependent Ca2+ activation in both SL ranges. Conversely, inorganic phosphate (Pi, 20 mM) decreased the rate of rise of active force and enhanced SL-dependent Ca2+ activation in both SL ranges. Our analyses revealed that, in the absence and presence of MgADP or Pi, the magnitude of SL-dependent Ca2+ activation was (1) inversely correlated with the rate of rise of active force, and (2) in proportion to passive force. These findings suggest that the SL dependence of active force in skeletal muscle is regulated via thin filament “on–off” switching and titin (connectin)-based interfilament lattice spacing modulation in a coordinated fashion, in addition to the regulation via the filament overlap

    Nepmucin, a novel HEV sialomucin, mediates L-selectin–dependent lymphocyte rolling and promotes lymphocyte adhesion under flow

    Get PDF
    Lymphocyte trafficking to lymph nodes (LNs) is initiated by the interaction between lymphocyte L-selectin and certain sialomucins, collectively termed peripheral node addressin (PNAd), carrying specific carbohydrates expressed by LN high endothelial venules (HEVs). Here, we identified a novel HEV-associated sialomucin, nepmucin (mucin not expressed in Peyer's patches [PPs]), that is expressed in LN HEVs but not detectable in PP HEVs at the protein level. Unlike conventional sialomucins, nepmucin contains a single V-type immunoglobulin (Ig) domain and a mucin-like domain. Using materials affinity-purified from LN lysates with soluble L-selectin, we found that two higher molecular weight species of nepmucin (75 and 95 kD) were decorated with oligosaccharides that bind L-selectin as well as an HEV-specific MECA-79 monoclonal antibody. Electron microscopic analysis showed that nepmucin accumulates in the extended luminal microvillus processes of LN HEVs. Upon appropriate glycosylation, nepmucin supported lymphocyte rolling via its mucin-like domain under physiological flow conditions. Furthermore, unlike most other sialomucins, nepmucin bound lymphocytes via its Ig domain, apparently independently of lymphocyte function–associated antigen 1 and very late antigen 4, and promoted shear-resistant lymphocyte binding in combination with intercellular adhesion molecule 1. Collectively, these results suggest that nepmucin may serve as a dual-functioning PNAd in LN HEVs, mediating both lymphocyte rolling and binding via different functional domains

    CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums

    Get PDF
    Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums
    corecore