1,137 research outputs found

    Critical behavior of a cellular automaton highway traffic model

    Full text link
    We derive the critical behavior of a CA traffic flow model using an order parameter breaking the symmetry of the jam-free phase. Random braking appears to be the symmetry-breaking field conjugate to the order parameter. For vmax=2v_{\max}=2, we determine the values of the critical exponents β\beta, γ\gamma and δ\delta using an order-3 cluster approximation and computer simulations. These critical exponents satisfy a scaling relation, which can be derived assuming that the order parameter is a generalized homogeneous function of ρρc|\rho-\rho_c| and p in the vicinity of the phase transition point.Comment: 6 pages, 12 figure

    Preparation of Peptide-like 2,5-Disubstituted p-Benzoquinone Derivatives. Peptide-like Polyoxo Compounds

    Get PDF
    A description is given of the reaction products of p-benzoquinone with glycine benzyl ester [lc], with B-alanine ethyl ester [Id] and with glycylglycine ethyl ester [le]

    Preparation of Peptide-like 2,5-Disubstituted p-Benzoquinone Derivatives. Peptide-like Polyoxo Compounds

    Get PDF
    A description is given of the reaction products of p-benzoquinone with glycine benzyl ester [lc], with B-alanine ethyl ester [Id] and with glycylglycine ethyl ester [le]

    Simulating spin-3/2 particles at colliders

    Full text link
    Support for interactions of spin-3/2 particles is implemented in the FeynRules and ALOHA packages and tested with the MadGraph 5 and CalcHEP event generators in the context of three phenomenological applications. In the first, we implement a spin-3/2 Majorana gravitino field, as in local supersymmetric models, and study gravitino and gluino pair-production. In the second, a spin-3/2 Dirac top-quark excitation, inspired from compositness models, is implemented. We then investigate both top-quark excitation and top-quark pair-production. In the third, a general effective operator for a spin-3/2 Dirac quark excitation is implemented, followed by a calculation of the angular distribution of the s-channel production mechanism.Comment: 20 pages, 7 figure

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    Magnetic hydrodynamics with asymmetric stress tensor

    Full text link
    In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an abelian extension of the Lie algebra of vector fields with a non-trivial 2-cocycle. We use the Lie algebra approach to prove the energy conservation law and the conservation of cross-helicity

    Cellular automaton rules conserving the number of active sites

    Full text link
    This paper shows how to determine all the unidimensional two-state cellular automaton rules of a given number of inputs which conserve the number of active sites. These rules have to satisfy a necessary and sufficient condition. If the active sites are viewed as cells occupied by identical particles, these cellular automaton rules represent evolution operators of systems of identical interacting particles whose total number is conserved. Some of these rules, which allow motion in both directions, mimic ensembles of one-dimensional pseudo-random walkers. Numerical evidence indicates that the corresponding stochastic processes might be non-Gaussian.Comment: 14 pages, 5 figure

    Cross-over behaviour in a communication network

    Full text link
    We address the problem of message transfer in a communication network. The network consists of nodes and links, with the nodes lying on a two dimensional lattice. Each node has connections with its nearest neighbours, whereas some special nodes, which are designated as hubs, have connections to all the sites within a certain area of influence. The degree distribution for this network is bimodal in nature and has finite variance. The distribution of travel times between two sites situated at a fixed distance on this lattice shows fat fractal behaviour as a function of hub-density. If extra assortative connections are now introduced between the hubs so that each hub is connected to two or three other hubs, the distribution crosses over to power-law behaviour. Cross-over behaviour is also seen if end-to-end short cuts are introduced between hubs whose areas of influence overlap, but this is much milder in nature. In yet another information transmission process, namely, the spread of infection on the network with assortative connections, we again observed cross-over behaviour of another type, viz. from one power-law to another for the threshold values of disease transmission probability. Our results are relevant for the understanding of the role of network topology in information spread processes.Comment: 12 figure
    corecore