13 research outputs found
Synthesis, structure and magnetic properties of tris(pyrazolyl)methane lanthanide complexes: Effect of the anion on the slow relaxation of magnetization
We report on the synthesis, structure and investigation of magnetic properties of a series of six heteroleptic complexes of the general formula [Ln(Tpm)X3]·yMeCN (Tpm = tris(3,5-dimethylpyrazolyl)methane; Ln = Tb, Dy, Er; X- = NO3 -, Cl- and y = 1 or 2). We demonstrate that the observation of a field-induced slow relaxation of magnetization is highly dependent on the anion's nature. While nitrate moieties appear to be suitable to stabilize the oblate electronic density of Dy3+, chloride ions generate an equatorial crystal-field allowing the slow relaxation of the prolate Er3+ ions. © 2018 The Royal Society of Chemistry
Yb(II) Triple-Decker Complex with the μ-Bridging Naphthalene Dianion [CpBn5Yb(DME)]2(μ-η4:η4-C10H8). Oxidative Substitution of [C10H8]2- by 1,4-Diphenylbuta-1,3-diene and P4 and Protonolysis of the Yb-C10H8 Bond by PhPH2
International audienceTwo synthetic approaches to the new three-decker Yb(II) complex [CpBn5Yb(DME)]2[μ-C10H8] (1) were successfully employed: the reaction of [CpBn5Yb(DME)(μ-I)]2 (2) with 2 molar equiv of [C10H8]-·K in DME and the reaction of [YbI(DME)2]2[μ-C10H8] (3) with CpBn5K in a 1:2 molar ratio in DME. Complex 1 was proved to be a Yb(II) binuclear triple-decker complex containing a dianionic naphthalene ligand bridging two CpBn5Yb(DME) fragments in a μ- η4:η4 fashion. An oxidative substitution of (C10H8)2- by trans-(1E,3E)-1,4-diphenylbuta-1,3-diene afforded the three-decker Yb(II) complex [CpBn5Yb(DME)]2(μ- η4:η4 -PhCHCHCHCHPh) (4) with a dianionic μ- η4:η4-bridging diphenylbutadiene ligand and naphthalene. The reaction of 1 with excess P4 also occurs with oxidation of (C10H8)2-, whereas Yb remains divalent. The reaction results in the formation of the trinuclear Yb(II) complex with a μ-bridging P7 3- ligand [CpBn5Yb(DME)]3(P7) (5). Protonation of the Yb-C10H8 bond in 1 with PhPH2 (1:2 molar ratio) afforded the dimeric phosphido complex [CpBn5Yb(THF)(μ2-PHPh)]2 (6) in 64% yield, while an attempt to obtain a phosphinidene Yb(II) species by reacting equimolar amounts of 1 and PhPH2 in DME resulted in the isolation of the metallocene complex CpBn5 2Yb(DME) (7). © 2016 American Chemical Society
An unusually stable pyridine-2-selenenyl chloride: structure and reactivity
According to an X-ray diffraction study, pyridine-2-selenenyl chloride (1) characterized by unusually high stability both in solutions and in the solid state adopts a dimeric structure formed by two secondary intermolecular Se···N interactions. However, it slowly transforms into zwitterionic T-shaped pyridinium-2-selenenyl dichloride (2) in a dichloromethane solution. Conformational features, electronic structures, and reactivities of 1 and 2 are discussed on the basis of experimental and theoretical (quantum chemical calculations) data. © 2016, Springer Science+Business Media New York
Synthesis, structure and magnetic properties of tris(pyrazolyl)methane lanthanide complexes: Effect of the anion on the slow relaxation of magnetization
We report on the synthesis, structure and investigation of magnetic properties of a series of six heteroleptic complexes of the general formula [Ln(Tpm)X3]·yMeCN (Tpm = tris(3,5-dimethylpyrazolyl)methane; Ln = Tb, Dy, Er; X- = NO3 -, Cl- and y = 1 or 2). We demonstrate that the observation of a field-induced slow relaxation of magnetization is highly dependent on the anion's nature. While nitrate moieties appear to be suitable to stabilize the oblate electronic density of Dy3+, chloride ions generate an equatorial crystal-field allowing the slow relaxation of the prolate Er3+ ions. © 2018 The Royal Society of Chemistry
An unusually stable pyridine-2-selenenyl chloride: structure and reactivity
According to an X-ray diffraction study, pyridine-2-selenenyl chloride (1) characterized by unusually high stability both in solutions and in the solid state adopts a dimeric structure formed by two secondary intermolecular Se···N interactions. However, it slowly transforms into zwitterionic T-shaped pyridinium-2-selenenyl dichloride (2) in a dichloromethane solution. Conformational features, electronic structures, and reactivities of 1 and 2 are discussed on the basis of experimental and theoretical (quantum chemical calculations) data. © 2016, Springer Science+Business Media New York
Complexes of 1-(2-R(F, CH3, Cl)-phenyl)-1,4-dihydro-5H-tetrazole-5-thiones with cadmium chloride: Synthesis, molecular, crystal structures and computational investigation approach
New complex compounds (I) - (IV) were synthesized by the reaction of 1-(2-fluorofluorophenyl) -1,4-dihydro-5H-tetrazole-5-thione (HL1), 1-(2-methylphenyl)-1,4-dihydro-5H-tetrazole-5-thione (HL2) and 1-(2-chlorochlorophenyl)-1,4-dihydro-5H-tetrazole-5-thione (HL3) with cadmium chloride. By X-ray diffraction analysis, molecular and crystal structures of complexes (I), (II), (III) and (IV) are determined. (CIF files CCDC № 2,003,797 (I), 1,993,454 (II), 2,151,359 (III), 2,098,997 (IV)). Hirshfeld surface analysis, frontier orbital analysis, atomic charges, electrostatic potential, nonlinear optical properties, and natural bond analysis of all three‑cadmium metal-organic complexes were discussed. A molecular docking study was used to investigate compounds' binding and interactions with DNA molecules, which predicted compound I as the best binder at the DNA minor groove and demonstrated closed distance interactions. In a long run of molecular dynamics simulations, the compound I complex was also depicted with good dynamics. © 2022 Elsevier Inc
On the Interaction of Cyclohexanone Azine with PBr3. Crystal Structure of Tris(4-bromo-3a,6a-diaza- 1,4-diphosphapentalen-1-yl)amine
Панова Юлия Сергеевна – кандидат химических наук, научный сотрудник сектора фосфорорганических соединений, Институт металлоорганической химии РАН. 603137, Нижний Новгород, ул. Тропинина, 49. E-mail: [email protected].
Сущев Вячеслав Викторович – кандидат химических наук, научный сотрудник сектора
фосфорорганических соединений, Институт металлоорганической химии РАН. 603137, Нижний
Новгород, ул. Тропинина, 49. E-mail: [email protected].
Христолюбова Александра Валерьевна – аспирант, Институт металлоорганической химии
РАН. 603137, Нижний Новгород, ул. Тропинина, 49. E-mail: [email protected]
Золотарева Наталья Вадимовна – кандидат химических наук, научный сотрудник сектора
фосфорорганических соединений, Институт металлоорганической химии РАН. 603137, Нижний
Новгород, ул. Тропинина, 49. E-mail: [email protected].
Румянцев Роман Валерьевич – кандидат химических наук, научный сотрудник сектора
рентгенодифракционных исследований, Институт металлоорганической химии РАН. Нижний
Новгород, 603137, ул. Тропинина, 49. E-mail: [email protected].
Фукин Георгий Константинович – доктор химических наук, ведущий научный сотрудник,
руководитель сектора рентгенодифракционных исследований, Институт металлоорганической
химии РАН, Нижний Новгород, 603137, ул Тропинина, 49. E-mail: [email protected].
Корнев Александр Николаевич – доктор химических наук, ведущий научный сотрудник,
руководитель сектора фосфорорганических соединений, Институт металлоорганической химии
РАН, 603137, Нижний Новгород, ул. Тропинина, 49. E-mail: [email protected]. Yu.S. Panova, [email protected]
V.V. Sushev, [email protected]
A.V. Khristolyubova, [email protected]
N.V. Zolotareva, [email protected]
R.V. Rumyantcev, [email protected]
G.K. Fukin, [email protected]
A.N. Kornev, [email protected]
G.A. Razuvaev Institute of Organometallic Chemistry, Rus. Acad. Sci., Nizhny Novgorod,
Russian FederationИзучено взаимодействие азина циклогексанона с бромидом фосфора(III) без растворителя. Показано, что основным продуктом реакции является циклогексан-
аннелированный 1,4-дибром-3а,6а-диаза-1,4-дифосфапентален (2, DDP-Br2, 57 %). Побочными продуктами синтеза оказались трис(4-бром-3а,6а-диаза-1,4-дифосфапентален-1-
ил)амин (3, 8 %) и бромид аммония. Молекулярная структура соединения 3 изучена методом РСА. Кристаллическая ячейка содержит две пары энантиомеров и восемь сольватных
молекул ТГФ, четыре из которых разупорядочены по двум положениям. Центральный
атом азота N(7) в соединении 3 образует три связи с атомами фосфора DDP-фрагментов
P(1), P(3), P(5), лежащими в одной плоскости. Располагающиеся ближе к центру молекулы
атомы азота гетеропенталеновых фрагментов (N(2), N(4), N(6)) имеют плоскую конфигурацию (с суммой валентных углов 359,62; 359,50; 359,38° соответственно). В свою очередь, для атомов N(1), N(3), N(5) наблюдается большее отклонение от плоского строения
(сумма валентных углов 353,85; 353,71; 353,96° соответственно). Периферийные связи
фосфор–азот (P(2)–N(1) 1,689(2), P(4)–N(3) 1,691(3), P(6)–N(5) 1,690(2) Å) заметно короче
соответствующих связей в соседних пятичленных циклах (P(1)–N(2) 1,744(2), P(3)–N(4)
1,738(3), P(5)–N(6) 1,733(2) Å). Различие в длинах связей фосфор–бром P(2)–Br(1)
2,4805(8), P(4)–Br(2) 2,4675(8), и P(6)–Br(3) 2,4836(8) Å может быть вызвано наличием
различных коротких контактов Br···H между соседними молекулами соединения 3, а также между соединением 3 и сольватными молекулами ТГФ. Предполагается, что соединение 3 образуется в ходе побочной реакции дибромида DDP (2) с бромидом аммония, который появился в реакционной смеси в результате частичного разложения азина циклогексанона при длительном нагревании его с бромидом фосфора. The interaction of cyclohexanone azine with phosphorus(III) bromide without a solvent has
been studied. It has been shown that the main reaction product is cyclohexane-annelated 1,4-
dibromo-3а,6а-diaza-1,4-diphosphapentalene (2, DDP-Br2, 57 %). The by-products of the synthesis
are tris(4-bromo-3а,6а-diaza-1,4-diphosphapentalen-1-yl)amine (3, 8 %) and ammonium
bromide. The molecular structure of compound 3 has been studied by X-ray analysis. The crystal
cell contains two pairs of enantiomers and eight THF solvate molecules, four of which are disordered
over two positions. The central nitrogen atom N(7) in compound 3 forms three bonds with
the phosphorus atoms of the DDP fragments P(1), P(3), P(5), located in the same plane. The nitrogen
atoms of the heteropentalene fragments (N(2), N(4), N(6)) that are located closer to the
center of the molecule have a planar configuration (with the sum of bond angles 359.62, 359.50,
359.38°, respectively). In its turn, for the N(1), N(3), N(5) atoms, a greater deviation from the
planar structure is observed (the sum of bond angles is 353.85, 353.71, 353.96°, respectively).
The peripheral phosphorus-nitrogen bonds (P(2)-N(1) 1.689(2), P(4)-N(3) 1.691(3), P(6)-N(5)
1.690(2) Å) are shorter than the corresponding bonds in neighboring five-membered rings (P(1)-
N(2) 1.744(2), P(3)-N(4) 1.738(3), P(5)-N(6) 1.733(2) Å). The difference in the phosphorusbromine
bond lengths P(2)-Br(1) 2.4805(8), P(4)-Br(2) 2.4675(8), and P(6)-Br(3) 2.4836(8) Å
can be caused by the presence of various short contacts Br···H between the adjacent molecules of
compound 3, as well as between compound 3 and the THF solvate molecules. It is assumed that
compound 3 is formed during the side reaction of DDP dibromide (2) with ammonium bromide,
which appeared in the reaction mixture as a result of the partial decomposition of cyclohexanone
azine upon prolonged heating with phosphorus bromide.Работа выполнена при финансовой поддержке Российского научного фонда (грант № 19-13-
00400) с использованием научного оборудования Центра коллективного пользования «Аналитический центр ИМХ РАН» при поддержке гранта «Обеспечение развития материально-
технической инфраструктуры центров коллективного пользования научным оборудованием»
(Номер Соглашения 13.ЦКП.21.0017 (075-15-2021-670))