19 research outputs found

    Different experimental approaches in modelling cataractogenesis: An overview of selenite-induced nuclear cataract in rats

    Get PDF
    Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na2SeO3) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed

    Influence of specific regions in Lp82 calpain on protein stability, activity, and localization within lens

    No full text
    PURPOSE: To determine the influence of specific regions within Lp82 calpain on protein stability, enzymatic activity, and localization within lens and to test the influence of an Lp82 knockout mouse on normal maturational proteolysis in lens. METHODS: DNA constructs for Lp82 and Lp82-related proteins were subcloned into the pcDNA 3.1 vector. The constructs contained a substitution of the novel sequence (NS) region from p94 for the AX1 N-terminal region of Lp82 and insertions of the p94 IS1 and IS2 regions into Lp82. Transient expression of these Lp82-related proteins was performed in COS-7 mammalian cells. Immunoblotting and casein zymography were used to measure protein stability and enzymatic activity of the expressed proteins. Homologous recombination was used to knock out p94 gene expression and p94 splice variants such as Lp82 and Lp85 in the lenses of 10-day-old mice. Confocal microscopy revealed the immunohistochemical localization Lp82 and Lp85 within lens. RESULTS: Insertion of IS1 into Lp82 resulted in a lack of stable protein and loss of enzymatic activity. In contrast, substitution of the NS region for AX1 and insertion of IS2 into Lp82 had no effect on the stability of the Lp82-related proteins. p94 knockout mice at 10 days of age exhibited a total absence of Lp82 activity in the lens but normal activity for the separate mu- and m-calpain gene products. Calcium-induced in vitro proteolysis was retarded in these Lp82/p94 knockout lenses. Lp82 and Lp85 immunostaining was intense throughout the cytoplasm of the cortical and nuclear fibers of newborn mouse lenses with little staining in the epithelium. In contrast, immunostaining for the ubiquitous m-calpain was highest in the epithelium and bow region, with much lower levels in the nucleus. The naturally occurring IS3 insert in Lp85 also promoted the association of Lp85 with the perinuclear region of the nucleated lens fibers. CONCLUSIONS: The lack of the IS1 region in Lp82 accounts for the stability and abundance of enzymatically active Lp82 protein in rodent lenses. Conversely, the presence of the IS1 region is responsible for the lability of p94 and Rt88 calpains in muscle and retina, respectively. The insert in Lp85 may promote membrane association. A consequence of the specific loss of Lp82 in the lens may be to retard normal maturational proteolysis
    corecore