459 research outputs found

    Dilute Multi Alpha Cluster States in Nuclei

    Full text link
    Dilute multi α\alpha cluster condensed states with spherical and axially deformed shapes are studied with the Gross-Pitaevskii equation and Hill-Wheeler equation, where the α\alpha cluster is treated as a structureless boson. Applications to self-conjugate 4N4N nuclei show that the dilute NαN\alpha states of 12^{12}C to 40^{40}Ca with Jπ=0+J^\pi=0^+ appear in the energy region from threshold up to about 20 MeV, and the critical number of α\alpha bosons that the dilute NαN\alpha system can sustain as a self-bound nucleus is estimated roughly to be Ncr∌10N_{cr}\sim10. We discuss the characteristics of the dilute NαN\alpha states with emphasis on the NN dependence of their energies and rms radii.Comment: 44 pages, 8 figure

    Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    Get PDF
    Si/Si0.66Ge0.34coupled quantum well (CQW) structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD) system. The samples were characterized using high resolution x-ray diffraction (HRXRD), cross-sectional transmission electron microscopy (XTEM) and photoluminescence (PL) spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained

    Measurement of forward neutral pion transverse momentum spectra for s\sqrt{s} = 7TeV proton-proton collisions at LHC

    Full text link
    The inclusive production rate of neutral pions in the rapidity range greater than y=8.9y=8.9 has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC s=7\sqrt{s}=7\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.Comment: 18 Pages, 10 figures, submitted to Phys. Rev.

    Quantum Information Processing with Ferroelectrically Coupled Quantum Dots

    Full text link
    I describe a proposal to construct a quantum information processor using ferroelectrically coupled Ge/Si quantum dots. The spin of single electrons form the fundamental qubits. Small (<10 nm diameter) Ge quantum dots are optically excited to create spin polarized electrons in Si. The static polarization of an epitaxial ferroelectric thin film confines electrons laterally in the semiconductor; spin interactions between nearest neighbor electrons are mediated by the nonlinear process of optical rectification. Single qubit operations are achieved through "g-factor engineering" in the Ge/Si structures; spin-spin interactions occur through Heisenberg exchange, controlled by ferroelectric gates. A method for reading out the final state, while required for quantum computing, is not described; electronic approaches involving single electron transistors may prove fruitful in satisfying this requirement.Comment: 10 pages, 3 figure

    An addressable quantum dot qubit with fault-tolerant control fidelity

    Get PDF
    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies

    Cellular Tropism, Population Dynamics, Host Range and Taxonomic Status of an Aphid Secondary Symbiont, SMLS (Sitobion miscanthi L Type Symbiont)

    Get PDF
    SMLS (Sitobion miscanthi L type symbiont) is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species
    • 

    corecore