12 research outputs found

    Role of p53 mutation in the effect of boron neutron capture therapy on oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boron neutron capture therapy (BNCT) is a selective radiotherapy, being effective for the treatment of even advanced malignancies in head and neck regions as well as brain tumors and skin melanomas. To clarify the role of p53 gene, the effect of BNCT on oral squamous cell carcinoma (SCC) cells showing either wild- (SAS/neo) or mutant-type (SAS/mp53) p53 was examined.</p> <p>Methods</p> <p>Cells were exposed to neutron beams in the presence of boronophenylalanine (BPA) at Kyoto University Research Reactor. Treated cells were monitored for modulations in colony formation, proliferation, cell cycle, and expression of cell cycle-associated proteins.</p> <p>Results</p> <p>When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo compared with SAS/mp53 cells. Cell cycle arrest at the G1 checkpoint was observed in SAS/neo, but not in SAS/mp53. Apoptotic cells increased from 6 h after BNCT in SAS/neo and 48 h in SAS/mp53 cells. The expression of p21 was induced in SAS/neo only, but G2 arrest-associated proteins including Wee1, cdc2, and cyclin B1 were altered in both cell lines.</p> <p>Conclusion</p> <p>These results indicate that oral SCC cells with mutant-type are more resistant to BNCT than those with wild-type p53, and that the lack of G1 arrest and related apoptosis may contribute to the resistance. At a physical dose affecting the cell cycle, BNCT inhibits oral SCC cells in p53-dependent and -independent manners.</p

    Multicentre multiobserver study of diffusion-weighted and fluid-attenuated inversion recovery MRI for the diagnosis of sporadic Creutzfeldt–Jakob disease: a reliability and agreement study

    Get PDF
    Objectives: To assess the utility of the display standardisation of diffusion-weighted MRI (DWI) and to compare the effectiveness of DWI and fluid-attenuated inversion recovery (FLAIR) MRI for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). Design: A reliability and agreement study. Setting: Thirteen MRI observers comprising eight neurologists and five radiologists at two universities in Japan. Participants: Data of 1.5-Tesla DWI and FLAIR were obtained from 29 patients with sCJD and 13 controls. Outcome measures: Standardisation of DWI display was performed utilising b0 imaging. The observers participated in standardised DWI, variable DWI (the display adjustment was observer dependent) and FLAIR sessions. The observers independently assessed each MRI for CJD-related lesions, that is, hyperintensity in the cerebral cortex or striatum, using a continuous rating scale. Performance was evaluated by the area under the receiver operating characteristics curve (AUC). Results: The mean AUC values were 0.84 (95% CI 0.81 to 0.87) for standardised DWI, 0.85 (95% CI 0.82 to 0.88) for variable DWI and 0.68 (95% CI 0.63 to 0.72) for FLAIR, demonstrating the superiority of DWI (p<0.05). There was a trend for higher intraclass correlations of standardised DWI (0.74, 95% CI 0.66 to 0.83) and variable DWI (0.72, 95% CI 0.62 to 0.81) than that of FLAIR (0.63, 95% CI 0.53 to 0.74), although the differences were not statistically significant. Conclusions: Standardised DWI is as reliable as variable DWI, and the two DWI displays are superior to FLAIR for the diagnosis of sCJD. The authors propose that hyperintensity in the cerebral cortex or striatum on 1.5-Tesla DWI but not FLAIR can be a reliable diagnostic marker for sCJD

    Reliability of DWI and FLAIR for diagnosis of sporadic CJD

    Get PDF
    Objectives: To assess the utility of the display standardisation of diffusion-weighted MRI (DWI) and to compare the effectiveness of DWI and fluid-attenuated inversion recovery (FLAIR) MRI for the diagnosis of sporadic Creutzfeldte–Jakob disease (sCJD). Design: A reliability and agreement study. Setting: Thirteen MRI observers comprising eight neurologists and five radiologists at two universities in Japan. Participants: Data of 1.5-Tesla DWI and FLAIR were obtained from 29 patients with sCJD and 13 controls. Outcome measures: Standardisation of DWI display was performed utilising b0 imaging. The observers participated in standardised DWI, variable DWI (the display adjustment was observer dependent) and FLAIR sessions. The observers independently assessed each MRI for CJD-related lesions, that is, hyperintensity in the cerebral cortex or striatum, using a continuous rating scale. Performance was evaluated by the area under the receiver operating characteristics curve (AUC). Results: The mean AUC values were 0.84 (95% CI 0.81 to 0.87) for standardised DWI, 0.85 (95% CI 0.82 to 0.88) for variable DWI and 0.68 (95% CI 0.63 to 0.72) for FLAIR, demonstrating the superiority of DWI (p<0.05). There was a trend for higher intraclass correlations of standardised DWI (0.74, 95% CI 0.66 to 0.83) and variable DWI (0.72, 95% CI 0.62 to 0.81) than that of FLAIR (0.63, 95% CI 0.53 to 0.74), although the differences were not statistically significant. Conclusions: Standardised DWI is as reliable as variable DWI, and the two DWI displays are superior to FLAIR for the diagnosis of sCJD. The authors propose that hyperintensity in the cerebral cortex or striatum on 1.5-Tesla DWI but not FLAIR can be a reliable diagnostic marker for sCJD

    Aicardi-Goutières Syndrome Is Caused by IFIH1 Mutations.

    Get PDF
    アイカルディ・グチエール症候群の新規責任遺伝子IFIH1の同定. 京都大学プレスリリース. 2014-07-04.Aicardi-Goutières syndrome (AGS) is a rare, genetically determined early-onset progressive encephalopathy. To date, mutations in six genes have been identified as etiologic for AGS. Our Japanese nationwide AGS survey identified six AGS-affected individuals without a molecular diagnosis; we performed whole-exome sequencing on three of these individuals. After removal of the common polymorphisms found in SNP databases, we were able to identify IFIH1 heterozygous missense mutations in all three. In vitro functional analysis revealed that IFIH1 mutations increased type I interferon production, and the transcription of interferon-stimulated genes were elevated. IFIH1 encodes MDA5, and mutant MDA5 lacked ligand-specific responsiveness, similarly to the dominant Ifih1 mutation responsible for the SLE mouse model that results in type I interferon overproduction. This study suggests that the IFIH1 mutations are responsible for the AGS phenotype due to an excessive production of type I interferon
    corecore