
Title Aicardi-Goutières Syndrome Is Caused by IFIH1 Mutations.

Author(s)

Oda, Hirotsugu; Nakagawa, Kenji; Abe, Junya; Awaya,
Tomonari; Funabiki, Masahide; Hijikata, Atsushi; Nishikomori,
Ryuta; Funatsuka, Makoto; Ohshima, Yusei; Sugawara, Yuji;
Yasumi, Takahiro; Kato, Hiroki; Shirai, Tsuyoshi; Ohara,
Osamu; Fujita, Takashi; Heike, Toshio

Citation American journal of human genetics (2014), 95(1): 121-125

Issue Date 2014-07-03

URL http://hdl.handle.net/2433/188948

Right © 2014 The American Society of Human Genetics. Published
by Elsevier Inc.

Type Journal Article

Textversion author

Kyoto University



 1 

Report 1 

Title 2 

Aicardi-Goutières syndrome is caused by IFIH1 mutations 3 

Authors 4 

Hirotsugu Oda,1, 2 Kenji Nakagawa,1 Junya Abe,1, 3 Tomonari Awaya,1 Masahide Funabiki,4 Atsushi 5 

Hijikata,5 Ryuta Nishikomori,1,* Makoto Funatsuka,6 Yusei Ohshima,7 Yuji Sugawara,8 Takahiro 6 

Yasumi,1 Hiroki Kato,4,9 Tsuyoshi Shirai,5 Osamu Ohara,2,10 Takashi Fujita,4 and Toshio Heike1 7 

 8 

1Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan 9 

2Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 10 

2300045, Japan 11 

3Department of Pediatrics, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka 5308480, 12 

Japan 13 

4Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 6068507, 14 

Japan 15 

5Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama 16 

5260829, Japan 17 

6Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 1628666, Japan 18 

7Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui 9108507, Japan 19 

8Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, 20 

Tokyo Medical and Dental University, Tokyo 1138510, Japan 21 

9Precursory Research for Embryonic Science and Technology (PRESTO), Science and Technology 22 



 2 

Agency (JST), Kawaguchi 3320012, Japan 1 

10Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu 2920818, Japan 2 

 3 

 4 

*Corresponding author: Ryuta Nishikomori 5 

Department of Pediatrics, Kyoto University Graduate School of Medicine 6 

54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan 7 

TEL: +81-75-751-3291; Fax: +81-75-752-2361; E-Mail: rnishiko@kuhp.kyoto-u.ac.jp8 



 3 

Abstract 1 

Aicardi-Goutières syndrome (AGS) is a rare, genetically determined early-onset progressive 2 

encephalopathy. To date, mutations in six genes have been identified as etiologic for AGS. Our Japanese 3 

nationwide AGS survey identified six AGS individuals without a molecular diagnosis; we performed 4 

whole exome sequencing on three of these individuals. After removal of the common polymorphisms 5 

found in SNP databases, we were able to identify IFIH1 heterozygous missense mutations in all three. In 6 

vitro functional analysis revealed that IFIH1 mutations increased type I interferon production, and the 7 

transcription of interferon-stimulated genes were elevated. IFIH1 encodes MDA5, and mutant MDA5 8 

lacked ligand-specific responsiveness, similarly to the dominant IFIH1 mutation responsible for the SLE 9 

mouse model that results in type I interferon overproduction. This study suggests that the IFIH1 10 

mutations are responsible for the AGS phenotype due to an excessive production of type I interferon. 11 



 Aicardi-Goutières syndrome (AGS [MIM 225750]) is a rare, genetically determined early-onset 1 

progressive encephalopathy1. Individuals affected with AGS typically suffer from progressive 2 

microcephaly associated with severe neurological symptoms, such as hypotonia, dystonia, seizures, 3 

spastic quadriplegia, and severe developmental delay2. On brain imaging, AGS is characterized by basal 4 

ganglia calcification, white matter abnormalities, and cerebral atrophy3, 4. Cerebrospinal fluid (CSF) 5 

analyses show chronic lymphocytosis and elevated levels of IFN-α and neopterin3-5. AGS individuals are 6 

often misdiagnosed as having intrauterine infections, such as TORCH syndrome, because of the 7 

similarities of these disorders, particularly the intracranial calcifications1. In AGS, etiological mutations 8 

have been reported in the following six genes: TREX1 (MIM 606609), which encodes a DNA 9 

exonuclease; RNASEH2A (MIM 606034), RNASEH2B (MIM 610326), and RNASEH2C (MIM 610330), 10 

which together comprise the RNase H2 endonuclease complex; SAMHD1 (MIM 606754), which encodes 11 

a deoxynucleotide triphosphohydrolase; and ADAR1 (MIM 146920), which encodes an adenosine 12 

deaminase6-9. Although more than 90% of AGS individuals harbor etiological mutations in one of these 13 

six genes, some AGS-affected individuals presenting with the clinical characteristics of AGS still lack a 14 

genetic diagnosis, suggesting the existence of additional AGS associated genes1.  15 

 We recently conducted a nationwide survey of AGS in Japan and reported 14 AGS individuals10. 16 

We have since recruited three other Japanese AGS individuals, and among these 17 individuals, we have 17 

identified 11 individuals with etiologic mutations; namely, TREX1 mutations in six, SAMHD1 mutations 18 

in three, and RNASEH2A and RNASEH2B mutations in one each. Of the remaining six individuals 19 

without a molecular diagnosis, trio-based whole exome sequencing was performed in three whose parents 20 

also agreed to participate in further genome-wide analyses (Figure 1A). Genomic DNA from each 21 

individual and their parents was enriched for protein-coding sequences, followed by massively parallel 22 



 5 

sequencing. The extracted non-synonymous or splice-site variants were filtered to remove those with 1 

minor allele frequencies (MAF) >0.01 in dbSNP137. To detect de novo variants, any variants observed in 2 

family members, listed in Human Genetic Variation Database (HGVD), or variants with MAF >0.02 in 3 

our in-house exome database were removed. To detect autosomal recessive (AR), compound 4 

heterozygous (CH), or X-linked (XL) variants, those with MAF >0.05 in our in-house database were 5 

removed (Figure S1). All samples were collected with the written informed consents by parents, and the 6 

study protocol was approved by the ethical committee of Kyoto University Hospital in accordance with 7 

the Declaration of Helsinki. 8 

After common polymorphisms were removed, we identified a total of 40, 18, 89, and 22 candidate 9 

variants under the de novo, AR, CH, and XL inheritance models, respectively, that were present in at least 10 

one of the three individuals (Table S1). Among them, missense mutations were identified in IFIH1 (MIM 11 

606951, RefSeq: NM_022168.2), which encodes MDA5 (NP_071451.2). These missense mutations are 12 

c.1354G>A, p.Ala452Thr, in AGS-1; c.1114C>T, p.Leu372Phe, in AGS-2; and c.2336G>A, 13 

p.Arg779His, in AGS-3 (Figure 1B). None of the mutations are found in HGVD, including the 1208 14 

Japanese samples, or our in-house exome database of 312 Japanese individuals. Multiple-sequence 15 

alignment using ClustalW2 revealed that each of the amino acids affected by these mutations are 16 

conserved among mammals (Figure1B). The subsequent amino acid alterations were all suggested to be 17 

disease-causing in at least one of the four function-prediction programs used (Table 1). None of the other 18 

genes identified in the de novo inheritance model, or any of the genes identified in the other three 19 

inheritance models, were mutated in all three individuals. The IFIH1 mutations identified were validated 20 

by Sanger sequencing. The other coding exons of IFIH1 were also examined by Sanger sequencing, and 21 

no other mutations were found. 22 
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 MDA5 is one of the cytosolic pattern recognition receptors that recognizes double-stranded RNA 1 

(dsRNA)11. MDA5 consists of N-terminal tandem CARD domains, a central helicase domain, and a 2 

C-terminal domain (Figure 1C). When bound to dsRNA, MDA5 forms a closed, C-shaped ring structure 3 

around the dsRNA stem, and excludes the tandem CARD as well as creates filamentous oligomer on 4 

dsRNA12. It is hypothesized that the tandem CARD interacts each other, and activates MAVS on the 5 

mitochondrial outer membrane. Oligomerization of MAVS induces TBK1 activation, IRF3 6 

phosphorylation, and induction of type I interferon transcription, resulting in the activation of a large 7 

number of interferon-stimulated genes (ISGs).  8 

 The neurological findings of the individuals with these IFIH1 mutations are typical of AGS (Table 9 

S2). They were born with appropriate weights for their gestational ages without any signs of intrauterine 10 

infection. However, they all demonstrated severe developmental delay in early infancy associated with 11 

progressive microcephaly. No arthropathy, hearing loss, or ophthalmological problems were observed. As 12 

for extraneural features, all three individuals had at least one of the following autoimmune features: 13 

positivity for autoantibodies, hyperimmunoglobulinemia, hypocomplementemia, and thrombocytopenia. 14 

Notably, none of the individuals with IFIH1 mutations had chilblain lesions, although all the five 15 

individuals with TREX1 mutations and two of the three individuals with SAMHD1 mutations in the 16 

Japanese AGS cohort showed chilblain lesions10. Individuals with SAMHD1 mutations and IFIH1 17 

mutations both show autoimmune features; however, chilblain lesions have only been observed in 18 

individuals with SAMHD1 mutations10. 19 

 To predict the effects of the identified amino acid substitutions on MDA5, three-dimensional 20 

model structures of MDA5 mutants were generated from the crystal structure of human MDA5-dsRNA 21 

complex12 (Protein Data Bank (PDB) code; 4gl2), using PyMOL (Schroedinger) and MOE (Chemical 22 
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Computing Group) (Figure S2A). The oligomeric model of MDA5 was generated using the electron 1 

microscopy imaging data of MDA5 filament lacking CARD domain22  (Electron Microscopic Data Bank 2 

(EMDB) code: 5444) (Figure S2B). The three amino acid substitutions in the AGS individuals are all 3 

located within the helicase domain (Figures 1C and S2A). Since Ala452 directly contacts the dsRNA 4 

ribose O2’ atom, the p.Ala452Thr substitution probably affect the binding affinity to dsRNA due to an 5 

atomic repulsion between the side chain of Thr452 and the dsRNA O2’ atom (Figures S2C and S2D). 6 

Leu372 is located adjacent to the ATP binding pocket, and the p.Leu372Phe substitution could increase 7 

the side chain volume of the binding pocket, affecting its ATP hydrolysis activity (Figures S2E and S2F). 8 

In our oligomeric model, Arg779 is located at the interface between the two monomers, which is 9 

consistent with the recent report showing that Lys777, close to Arg779, is in close proximity to the 10 

adjacent monomer12. Furthermore, in our model, Arg779 is in close to Asp572 on the surface of the 11 

adjacent monomer. We speculate that losing the positive charge due to the p.Arg779His substitution 12 

would possibly affect the electrostatic interaction between the MDA5 monomers (Figures S2G and S2H). 13 

To connect the identified IFIH1 mutations with the AGS phenotype, we examined the type I 14 

interferon signature in the individuals by performing reverse transcription quantitative PCR (RT-qPCR) 15 

of seven ISGs13. Peripheral blood mononuclear cells (PBMCs) from the three AGS individuals showed 16 

up-regulation of ISGs transcription (Figure 2), confirming the type I interferon signature in the 17 

individuals with IFIH1 mutations. 18 

 To elucidate the disease-causing capability of the identified IFIH1 mutations, three FLAG-tagged 19 

IFIH1 mutant plasmids containing these mutations were constructed using site-directed mutagenesis. 20 

These plasmids were transiently expressed on human hepatoma cell line Huh7 and the IFNB1 promoter 21 

activity as well as endogenous expression of IFIT1 ([MIM 147690]) was measured 48 hours after 22 
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transfection14. The three mutant plasmids activated the IFNB1 promoter in Huh7 cells more strongly than 1 

the wild MDA5 and nearby missense variants reported in dbSNP (Figures 3 and S3). The up-regulation of 2 

endogenous IFIT1 was also observed in the transfected cells (Figure S4), suggesting that these AGS 3 

mutations enhance the intrinsic activation function of MDA5. Recent genome wide association studies 4 

(GWAS) showed association of the IFIH1 with various autoimmune diseases, such as systemic lupus 5 

erythematosus (SLE), type I diabetes, psoriasis, and vitiligo15 16 17 18. We examined IFNB1 promoter 6 

activity induced by the c.2836G>A (p.Ala946Thr) polymorphism (rs1990760) identified in the GWAS. 7 

Although the c.2836G>A polymorphism partially activated the promoter activity, the induced activity 8 

was lower than those of the AGS-derived mutants. In addition, the dominantly inherited SLE mouse 9 

model in the ENU-treated mouse colony is reported to have the IFIH1 mutation, c.2461G>A 10 

(p.Gly821Ser)14. These observations suggest that IFIH1 has strong association with various autoimmune 11 

diseases, especially SLE, which also has a type I interferon signature19. Since alteration of TREX1 has 12 

been reported to cause AGS as well as SLE20, it seems quite plausible for IFIH1 to also be involved in 13 

both AGS and SLE. Interestingly, all the individuals identified with IFIH1 mutations had autoantibodies, 14 

suggesting the contribution of IFIH1 mutations to autoimmune phenotypes.  15 

 To further delineate the functional consequences of the three IFH1 mutations, we measured the 16 

ligand-specific Ifnb mRNA induction by stimulating Ifih1null mouse embryonic fibroblasts (MEFs) 17 

reconstituted with retrovirus expressing the IFIH1 mutants by an MDA5-speicfic ligand, 18 

encephalomyocarditis virus (EMCV)21. None of the MEF cells expressing the three mutant IFIH1 19 

responded to the EMCV, which suggested that the MDA5 variants lacked the ligand-specific 20 

responsiveness. The response of the three AGS mutants against the MDA5-specific EMCV was similar to 21 
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that of the p.Gly821Ser variant reported in the dominantly inherited SLE mouse model with type I 1 

interferon overproduction14 (Figures 4 and S5). 2 

During the revision of this manuscript, Rice et al. identified nine individuals with IFIH1 mutations, 3 

including the c.2336G>A mutation we identified, in a spectrum of neuroimmunological features 4 

consistently associated with enhanced type I interferon states including AGS 23. Although we agree that 5 

the IFIH1 mutations cause constitutive type I interferon activation, Rice et al. show the mutated MDA5 6 

proteins maintain ligand-induced responsiveness, which was not the case in our study. Since we measured 7 

the ligand-specific responsiveness of MDA5 in different experimental conditions, further analysis 8 

remains to be performed to reveal the biochemical mechanism of interferon overproduction by the 9 

mutated MDA5. 10 

 In conclusion, we identified mutations in IFIH1 as a cause of AGS. The individuals with the IFIH1 11 

mutations showed encephalopathy typical of AGS as well as the type I interferon signature with 12 

autoimmune phenotypes, but lacked the chilblains. Further analysis remains to elucidate the mechanism 13 

how the IFIH1 mutations identified in AGS cause the type I interferon overproduction.   14 

  15 
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Figure legends 1 

Figure 1 2 

Pedigree information for the AGS individuals and details of the IFIH1 mutations identified. 3 

(A) The pedigrees of the three families indicating the AGS probands. (B) Sanger sequencing 4 

chromatograms of the three IFIH1 mutations found in the AGS individuals. The locations of these 5 

mutations in the amino acid sequence of the MDA5 protein are shown in alignment with the conserved 6 

amino acid sequences from several species. This alignment was obtained using ClustalW2. The amino 7 

acids that are conserved with human are circled in red. (C) The MDA5 protein domain structure with the 8 

amino acid substitutions observed in these AGS individuals. 9 

 10 

Figure 2 11 

Quantitative RT-PCR (RT-qPCR) of a panel of seven ISGs in PBMCs obtained from the IFIH1-mutated 12 

individuals and healthy controls. RT-qPCR was performed as previously described14. The relative 13 

abundance of each transcript was normalized to the expression level of β-actin. Taqman probes used were 14 

the same as previous report13, except for ACTB (MIM 102630). Individual data were shown relative to a 15 

single calibrator (control 1). The experiment was performed in triplicate. Statistical significance was 16 

determined by Mann-Whitney U test, *p<0.05. 17 

 18 

Figure 3 19 

The effects of the three MDA5 variants on IFNB1 expression. Huh7 cells were transfected with a reporter 20 

gene containing IFNB1 promoter  (p-55C1B Luc), an empty vector (BOS) and expression vectors for 21 



 16 

FLAG-tagged human wild type IFIH1, c.2836G>A polymorphism (p.Ala946Thr) in the GWAS studies, 1 

and the identified IFIH1 mutants. Luciferase activity was measured 48 hours after transfection, and the 2 

MDA5 protein accumulation was examined by Western blotting as previously described14. FLAG 3 

indicates the accumulation of FLAG-tagged MDA5. Each experiment was performed in triplicate and 4 

data are mean ± S.E.M. Shown is a representative of two with consistent results. Statistical significance 5 

was determined by Student’s t-test. *p<0.05, **p<0.01. 6 

 7 

Figure 4 8 

Ifnb mRNA levels in Ifih1 deficient MEFs expressing IFIH1 mutants. The MEFs were infected with 9 

retroviruses encoding mouse wild type Ifih1, mouse Ifih1 with NM_027835.3:c.2461G>A (p.Gly821Ser) 10 

mutation, or the three AGS mutants of human IFIH1. 48hrs after the retroviral infection, these MEFs 11 

were infected with indicated multiplicity of infection (MOI) of EMCV for 6 hours, and Ifnb mRNA levels 12 

were measured by RT-qPCR. The relative abundance of each transcript was normalized to the expression 13 

level of 18S ribosomal RNA. Data are shown as mean ± S.E.M of triplicate samples. Shown is a 14 

representative of two independent experiments. Statistical significance was determined by Student’s t-test, 15 

*p<0.001. The expression of the retrovirally transduced FLAG-tagged constructs was confirmed by 16 

Western blotting (Figure S5).17 
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Table 1 
 
Functional predictions of the IFIH1 variants 

Individuals Nucleotide change Amino acid change SIFT PolyPhen2 Mutation Taster PROVEAN 

AGS-1 c.1354G>A p.Ala452Thr Tolerated Benign Disease causing Neutral 
AGS-2 c.1114C>T p.Leu372Phe Tolerated Probably damaging Disease causing Neutral 
AGS-3 c.2336G>A p.Arg779His Tolerated Probably damaging Disease causing Deleterious 

 
The potential functional effects of the IFIH1 variants identified in the AGS individuals were predicted using SIFT, PolyPhen2, Mutation Taster, and PROVEAN.  
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Mapping to human reference genome 
(GRCh37) with Burrows-Wheeler Aligner !

Variant calling with Genome Analysis Toolkit !

Sequencing!

Exome enrichment from genomic DNA!

Variant annotation !
using an in-house program!

Removal of silent single-nucleotide variants!

De novo!

Remove variants;!
•  dbSNP 137 with >0.01 

allele frequency!
•  In-house exome database 

with >0.02 allele 
frequency!

•  Human Genetic Variation 
Database  !

Autosomal recessive!
Compound heterozygote!

X-linked!

Remove variants;!
•  dbSNP 137 with >0.01 

allele frequency!
•  In-house exome database 

with >0.05 allele 
frequency!

Figure S1. A flow diagram of the trio-based whole exome sequencing process.  
GRCh37; Genome Reference Consortium Human build 37. 
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Figure'S2.'Predicted'effects'of'MDA5'amino'acid'subs;tu;ons'on'its'protein'structure.�
(A,$B)$Mapping$of$the$three$mutated$amino$acids$on$the$crystal$structure$of$MDA5<dsRNA$complex$
(Protein$Data$Bank$(PDB)$code;$4gl2).$The$ATP<binding$domain$and$the$other$domains$of$MDA5$are$
colored$green$and$light<green,$while$the$adjacent$MDA5$monomers$are$colored$light$blue$and$
orange,$respecJvely.$Three$residues$mutated$in$the$paJents,$Ala452,$Leu372,$and$Arg779,$are$
shown$in$space$filling$models$(magenta).$(A)$Top$view$of$the$terJary$structure$of$the$MDA5$protein$
and$dsRNA.$(B)$Side$view$of$the$model$of$MDA5$monomer$oligomerizaJon.$The$model$was$
constructed$by$fiSng$the$MDA5$monomers$and$the$38bps$dsRNA$structure$into$the$density$map$
from$the$electron$microscopic$analysis$of$the$MDA5<dsRNA$fibril$(EMDB$code;$5444).�



(C,$D,$E,$F,$G,$H)$Detailed$views$of$the$mutated$amino$acid$resides.$(C)$Ala452$is$directly$in$contact$
with$the$O2’$atom$of$the$ribose$moiety$of$guanine$residue$(G7).$(D)$The$p.Ala452Thr$subsJtuJon$is$
predicted$to$induce$an$electric$repulsion$between$the$side$chain$of$Thr452$and$the$O2’$atom$of$RNA.$
(E)$Leu372$is$located$in$the$ATP$binding$pocket.$(F)$The$p.Leu372Phe$subsJtuJon$is$predicted$to$
increase$the$side$chain$volume$of$the$binding$pocket,$and$would$affect$the$ATP$hydrolysis$acJvity$of$
MDA5$by$interfering$with$Asp443,$a$part$of$the$catalyJc$residues.$(G)$Arg779$is$located$in$the$
interface$between$MDA5$monomers,$and$is$possibly$involved$in$electrostaJc$interacJons$between$
the$monomers.$(H)$The$p.Arg779His$subsJtuJon$is$predicted$to$affect$the$electrostaJc$interacJon$
due$to$loss$of$the$posiJve$charge.$�
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Figure S3. Comparison of the mutant MDA5 reporter activity between the AGS mutants 
and SNPs. Huh7 cells were transfected with a reporter gene containing IFNB1 promoter 
(p-55C1B Luc), along with empty vector, wild-type MDA5, its three AGS mutants, or three 
MDA5 amino acid variations corresponding to other non-synonymous SNPs; namely, 
p.Ala452Val (c.1355C>T), p.Ala788Thr (2362G>A), and p.Arg806Cys (c.2416C>T). 
Luciferase activity was measured 48 hours after transfection. The experiment was performed 
in triplicate and data are mean ± S.E.M. The mean of each triplicate was compared between 
the three AGS mutants and three mutants having other SNPs. Statistical significance was 
determined by Student’s t-test. *p<0.005. 
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Figure S4. Endogenous expression of the IFIT1 gene in the Huh7 transfection. IFIT1 
expression of the transfected Huh7 cells was measured by RT-qPCR. The relative abundance 
of each transcript was normalized to the expression level of 18S ribosomal RNA. Each 
experiment was performed in triplicate and data are mean ± S.E.M. Statistical significance was 
determined by Student’s t-test. *p<0.01.  



Figure S5. Retrovirally transduced expression of IFIH1 constructs in Ifih1null MEFs. 
 Ifih1null MEFs were transfected with empty retrovirus vector, retrovirus  encoding FLAG-
mouse wild type Ifih1 (WT) or FLAG-mouse Ifih1 with  p.Gly821Ser mutation, or the FLAG-
tagged three AGS mutants of human IFIH1. The FLAG-tagged MDA5 and β-Actin 
accumulation was examined by Western blotting.  
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Supplemental table 1 

Exome sequencing summary 

 
AGS-1 AGS-2 AGS-3 

Exome enrichment kit Illumina  Illumina Agilent 

 

TruSeq Exome     

Enrichment Kit 

TruSeq Exome          

Enrichment Kit 

SureSelect Human     

All Exon V5 Kit  

Sequencer  HiSeq 1000 HiSeq 1000 HiSeq 1500 

Mapped region (>=5x) 58384949 57380736 87233940 

Exome target region 62286366 62286366 89659527 

>=x5 coverage (%) 93.7363 92.1240 97.2946 

Total variants 60273 57558 99557 

    

    

Variants after dbSNP137 filtering AGS-1 AGS-2 AGS-3 

  Total 2804 2622 2522 

   Frameshift 111 98 114 

   Nonsense 51 50 47 

   Missense or in-frame indel 2618 2454 2067 

   Splice-site 24 20 294 

    

    

Rare variants AGS-1 AGS-2 AGS-3 

    Total 34 28 102 

     De novo 7 4 28 

     Autosomal recessive 5 2 11 

     Compound heterozygous 12 10 63 

     X-linked 10 12 N.D. 

    

    

Sequence data were mapped against the human reference genome (Genome Reference Consortium Human Build 37) 

using Burrows-Wheeler Aligner software. Variants were called using the Genome Analysis Toolkit, and were 

filtered to remove those with variant quality scores less than 50. Gene annotation of each variant was performed 

using an in-house program. Identified non-synonymous or splice-site variants were filtered to remove those with 

minor allele frequencies (MAF) >0.01 in dbSNP137. For detecting any rare de novo variants, these variants 

observed in family members, identified in Human Genetic Variation Database, or those with MAF >0.02 in our 

in-house exome database were removed. For rare autosomal recessive, compound heterozygous, or X-linked 

variants, those with MAF >0.05 in our in-house database were removed. N.D.; not determined.  

 



Supplemental table 2  Profiles of the AGS individuals 

Clinical findings 

 Age Sex GA BW Disease onset Developmental 

delay 

Other neurological manifestations Chilblain 

lesions 

Extraneural manifestations 

AGS-1 5 yr M 36 wk 2780 g 4 d 

Omphalitis with thrombocytopenia 

Severe Hypertonia, complex febrile seizure, 

microcephaly, spastic quadriplegia 

No Idiopathic interstitial 

pneumonia 

AGS-2 6 yr M 39 wk 3290 g 6 mo 

Developmental delay 

Severe Regression, dystonia, microcephaly, 

quadriplegia 

No Atopic dermatitis 

AGS-3 2 yr F 37 wk 2515 g 5 mo 

Developmental delay 

Severe Complex febrile seizure, dystonia, 

hypotonia, progressive microcephaly, 

spastic quadriplegia 

No Recurrent otitis media, 

sinusitis, periodic fever 

 

Laboratory and radiographic findings 

 CSF 

lymphocytosis 

CSF elevated 

IFN-α 

CSF elevated 

neopterin 

Serum elevated 

autoantibody 

Other laboratory features Cranial calcification White matter 

abnormality 

Brain 

atrophy 

AGS-1 No 

(16 mo) 

Yes 

13.2IU/ml 

(16 mo) 

n.d. Anti-LKM1 Thrombocytopenia, increased 

serum transaminases, 

hypocomplementemia, 

hypergammaglobulinemia 

Yes 

Bilateral in the basal ganglia and 

white matter 

Yes Yes 

AGS-2 No 

(3 yr) 

No 

(3 yr) 

Yes 

285nM 

(3 yr) 

ANA 1:320 None Yes 

Bilateral in the basal ganglia and 

corticomedullary junction 

Yes Yes 

AGS-3 No 

(12 mo) 

No 

<6IU/ml 

(12 mo) 

Yes 

71.23nM 

(12 mo) 

ANA 1:320 

Anti-dsDNA 

Anti-Sm 

PAIgG 

Thrombocytopenia, increased 

serum transaminases, 

hypocomplementemia, 

hypergammaglobulinemia 

Yes 

Bilateral spotty in the basal 

ganglia and subcortical white 

matter 

Yes 

 

Yes 

 

Notes: GA, gestational age; BW, birth weight; M, male; F, female; d, day(s); wk, week(s); mo, month(s); yr, year(s); n.d., not done. 

The upper limit of normal CSF neopterin in our institute is 34.6nM at an age of 1-12 months and 25nM at an age of 2-12 years
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