2,939 research outputs found

    Generalized Master equation approach to mesoscopic time-dependent transport

    Full text link
    We use a generalized Master equation (GME) formalism to describe the non-equilibrium time-dependent transport through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire are modulated by out-of-phase time-dependent functions which simulate a turnstile device. One lead is fixed at one end of the sample whereas the other lead has a variable placement. The system is described by a lattice model. We find that the currents in both leads depend on the placement of the second lead. In the rather small bias regime we obtain transient currents flowing against the bias for short time intervals. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method

    Universal oscillations in counting statistics

    Full text link
    Noise is a result of stochastic processes that originate from quantum or classical sources. Higher-order cumulants of the probability distribution underlying the stochastic events are believed to contain details that characterize the correlations within a given noise source and its interaction with the environment, but they are often difficult to measure. Here we report measurements of the transient cumulants > of the number n of passed charges to very high orders (up to m=15) for electron transport through a quantum dot. For large m, the cumulants display striking oscillations as functions of measurement time with magnitudes that grow factorially with m. Using mathematical properties of high-order derivatives in the complex plane we show that the oscillations of the cumulants in fact constitute a universal phenomenon, appearing as functions of almost any parameter, including time in the transient regime. These ubiquitous oscillations and the factorial growth are system-independent and our theory provides a unified interpretation of previous theoretical studies of high-order cumulants as well as our new experimental data.Comment: 19 pages, 4 figures, final version as published in PNA

    Transient current spectroscopy of a quantum dot in the Coulomb blockade regime

    Full text link
    Transient current spectroscopy is proposed and demonstrated in order to investigate the energy relaxation inside a quantum dot in the Coulomb blockade regime. We employ a fast pulse signal to excite an AlGaAs/GaAs quantum dot to an excited state, and analyze the non-equilibrium transient current as a function of the pulse length. The amplitude and time-constant of the transient current are sensitive to the ground and excited spin states. We find that the spin relaxation time is longer than, at least, a few microsecond.Comment: 5 pages, 3 figure

    Superposition of photon- and phonon- assisted tunneling in coupled quantum dots

    Full text link
    We report on electron transport through an artificial molecule formed by two tunnel coupled quantum dots, which are laterally confined in a two-dimensional electron system of an Alx_xGa1x_{1-x}As/GaAs heterostructure. Coherent molecular states in the coupled dots are probed by photon-assisted tunneling (PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between the microwave photons and the molecular states. Below 8 GHz, a pronounced superposition of phonon- and photon-assisted tunneling is observed. Coherent superposition of molecular states persists under excitation of acoustic phonons.Comment: 5 pages, 4 figure

    Photon-Assisted Transport Through Ultrasmall Quantum Dots: Influence of Intradot Transitions

    Full text link
    We study transport through one or two ultrasmall quantum dots with discrete energy levels to which a time-dependent field is applied (e.g., microwaves). The AC field causes photon-assisted tunneling and also transitions between discrete energy levels of the dot. We treat the problem by introducing a generalization of the rotating-wave approximation to arbitrarily many levels. We calculate the dc-current through one dot and find satisfactory agreement with recent experiments by Oosterkamp et al. . In addition, we propose a novel electron pump consisting of two serially coupled single-level quantum dots with a time-dependent interdot barrier.Comment: 16 pages, Revtex, 10 eps-figure

    Phonon-induced relaxation of a two-state system in solids

    Full text link
    We study phonon-induced relaxation of quantum states of a particle (e.g., electron or proton) in a rigid double-well potential in a solid. Relaxation rate due to Raman two-phonon processes have been computed. We show that in a two-state limit, symmetry arguments allow one to express these rates in terms of independently measurable parameters. In general, the two-phonon processes dominate relaxation at higher temperature. Due to parity effect in a biased two-state system, their rate can be controlled by the bias.Comment: 5 PR pages, 1 figur

    Electron transport through double quantum dots

    Full text link
    Electron transport experiments on two lateral quantum dots coupled in series are reviewed. An introduction to the charge stability diagram is given in terms of the electrochemical potentials of both dots. Resonant tunneling experiments show that the double dot geometry allows for an accurate determination of the intrinsic lifetime of discrete energy states in quantum dots. The evolution of discrete energy levels in magnetic field is studied. The resolution allows to resolve avoided crossings in the spectrum of a quantum dot. With microwave spectroscopy it is possible to probe the transition from ionic bonding (for weak inter-dot tunnel coupling) to covalent bonding (for strong inter-dot tunnel coupling) in a double dot artificial molecule. This review on the present experimental status of double quantum dot studies is motivated by their relevance for realizing solid state quantum bits.Comment: 32 pages, 31 figure

    Dephasing of coupled spin qubit system during gate operations due to background charge fluctuations

    Full text link
    It has been proposed that a quantum computer can be constructed based on electron spins in quantum dots or based on a superconducting nanocircuit. During two-qubit operations, the fluctuation of the coupling parameters is a critical factor. One source of such fluctuation is the stirring of the background charges. We focused on the influence of this fluctuation on a coupled spin qubit system. The induced fluctuation in exchange coupling changes the amount of entanglement, fidelity, and purity. In our previous study, the background charge fluctuations were found to be an important channel of dephasing for a single Josephson qubit.Comment: 10 pages, 7 figure. to be publishe

    Resonant inelastic x-ray scattering in one-dimensional copper oxides

    Full text link
    The Cu K-edge resonant inelastic x-ray scattering (RIXS) spectrum in one-dimensional insulating cuprates is theoretically examined by using the exact diagonalization technique for the extended one-dimensional Hubbard model with nearest neighbor Coulomb interaction. We find the following characteristic features that can be detectable by RIXS experiments: (i) The spectrum with large momentum transfer indicates the formation of excitons, i.e., bound states of holon and doublon. (ii) The spectrum with small momentum transfer depends on the incident photon energy. We propose that the RIXS provides a unique opportunity to study the upper Hubbard band in one-dimensional cuprates.Comment: 3 pages with 4 figures, minor changes, to appear in Phys.Rev.
    corecore