2,961 research outputs found
Generalized Master equation approach to mesoscopic time-dependent transport
We use a generalized Master equation (GME) formalism to describe the
non-equilibrium time-dependent transport through a short quantum wire connected
to semi-infinite biased leads. The contact strength between the leads and the
wire are modulated by out-of-phase time-dependent functions which simulate a
turnstile device. One lead is fixed at one end of the sample whereas the other
lead has a variable placement. The system is described by a lattice model. We
find that the currents in both leads depend on the placement of the second
lead. In the rather small bias regime we obtain transient currents flowing
against the bias for short time intervals. The GME is solved numerically in
small time steps without resorting to the traditional Markov and rotating wave
approximations. The Coulomb interaction between the electrons in the sample is
included via the exact diagonalization method
Universal oscillations in counting statistics
Noise is a result of stochastic processes that originate from quantum or
classical sources. Higher-order cumulants of the probability distribution
underlying the stochastic events are believed to contain details that
characterize the correlations within a given noise source and its interaction
with the environment, but they are often difficult to measure. Here we report
measurements of the transient cumulants > of the number n of passed
charges to very high orders (up to m=15) for electron transport through a
quantum dot. For large m, the cumulants display striking oscillations as
functions of measurement time with magnitudes that grow factorially with m.
Using mathematical properties of high-order derivatives in the complex plane we
show that the oscillations of the cumulants in fact constitute a universal
phenomenon, appearing as functions of almost any parameter, including time in
the transient regime. These ubiquitous oscillations and the factorial growth
are system-independent and our theory provides a unified interpretation of
previous theoretical studies of high-order cumulants as well as our new
experimental data.Comment: 19 pages, 4 figures, final version as published in PNA
Transient current spectroscopy of a quantum dot in the Coulomb blockade regime
Transient current spectroscopy is proposed and demonstrated in order to
investigate the energy relaxation inside a quantum dot in the Coulomb blockade
regime. We employ a fast pulse signal to excite an AlGaAs/GaAs quantum dot to
an excited state, and analyze the non-equilibrium transient current as a
function of the pulse length. The amplitude and time-constant of the transient
current are sensitive to the ground and excited spin states. We find that the
spin relaxation time is longer than, at least, a few microsecond.Comment: 5 pages, 3 figure
Superposition of photon- and phonon- assisted tunneling in coupled quantum dots
We report on electron transport through an artificial molecule formed by two
tunnel coupled quantum dots, which are laterally confined in a two-dimensional
electron system of an AlGaAs/GaAs heterostructure. Coherent
molecular states in the coupled dots are probed by photon-assisted tunneling
(PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between
the microwave photons and the molecular states. Below 8 GHz, a pronounced
superposition of phonon- and photon-assisted tunneling is observed. Coherent
superposition of molecular states persists under excitation of acoustic
phonons.Comment: 5 pages, 4 figure
Photon-Assisted Transport Through Ultrasmall Quantum Dots: Influence of Intradot Transitions
We study transport through one or two ultrasmall quantum dots with discrete
energy levels to which a time-dependent field is applied (e.g., microwaves).
The AC field causes photon-assisted tunneling and also transitions between
discrete energy levels of the dot. We treat the problem by introducing a
generalization of the rotating-wave approximation to arbitrarily many levels.
We calculate the dc-current through one dot and find satisfactory agreement
with recent experiments by Oosterkamp et al. . In addition, we propose a novel
electron pump consisting of two serially coupled single-level quantum dots with
a time-dependent interdot barrier.Comment: 16 pages, Revtex, 10 eps-figure
Phonon-induced relaxation of a two-state system in solids
We study phonon-induced relaxation of quantum states of a particle (e.g.,
electron or proton) in a rigid double-well potential in a solid. Relaxation
rate due to Raman two-phonon processes have been computed. We show that in a
two-state limit, symmetry arguments allow one to express these rates in terms
of independently measurable parameters. In general, the two-phonon processes
dominate relaxation at higher temperature. Due to parity effect in a biased
two-state system, their rate can be controlled by the bias.Comment: 5 PR pages, 1 figur
Electron transport through double quantum dots
Electron transport experiments on two lateral quantum dots coupled in series
are reviewed. An introduction to the charge stability diagram is given in terms
of the electrochemical potentials of both dots. Resonant tunneling experiments
show that the double dot geometry allows for an accurate determination of the
intrinsic lifetime of discrete energy states in quantum dots. The evolution of
discrete energy levels in magnetic field is studied. The resolution allows to
resolve avoided crossings in the spectrum of a quantum dot. With microwave
spectroscopy it is possible to probe the transition from ionic bonding (for
weak inter-dot tunnel coupling) to covalent bonding (for strong inter-dot
tunnel coupling) in a double dot artificial molecule. This review on the
present experimental status of double quantum dot studies is motivated by their
relevance for realizing solid state quantum bits.Comment: 32 pages, 31 figure
Dephasing of coupled spin qubit system during gate operations due to background charge fluctuations
It has been proposed that a quantum computer can be constructed based on
electron spins in quantum dots or based on a superconducting nanocircuit.
During two-qubit operations, the fluctuation of the coupling parameters is a
critical factor. One source of such fluctuation is the stirring of the
background charges. We focused on the influence of this fluctuation on a
coupled spin qubit system. The induced fluctuation in exchange coupling changes
the amount of entanglement, fidelity, and purity. In our previous study, the
background charge fluctuations were found to be an important channel of
dephasing for a single Josephson qubit.Comment: 10 pages, 7 figure. to be publishe
Resonant inelastic x-ray scattering in one-dimensional copper oxides
The Cu K-edge resonant inelastic x-ray scattering (RIXS) spectrum in
one-dimensional insulating cuprates is theoretically examined by using the
exact diagonalization technique for the extended one-dimensional
Hubbard model with nearest neighbor Coulomb interaction. We find the
following characteristic features that can be detectable by RIXS experiments:
(i) The spectrum with large momentum transfer indicates the formation of
excitons, i.e., bound states of holon and doublon. (ii) The spectrum with small
momentum transfer depends on the incident photon energy. We propose that the
RIXS provides a unique opportunity to study the upper
Hubbard band in one-dimensional cuprates.Comment: 3 pages with 4 figures, minor changes, to appear in Phys.Rev.
- …