10 research outputs found

    Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Corynebacterium glutamicum </it>has several anaplerotic pathways (anaplerosis), which are essential for the productions of amino acids, such as lysine and glutamate. It is still not clear how flux changes in anaplerotic pathways happen when glutamate production is induced by triggers, such as biotin depletion and the addition of the detergent material, Tween 40. In this study, we quantitatively analyzed which anaplerotic pathway flux most markedly changes the glutamate overproduction induced by Tween 40 addition.</p> <p>Results</p> <p>We performed a metabolic flux analysis (MFA) with [1-<sup>13</sup>C]- and [U-<sup>13</sup>C]-labeled glucose in the glutamate production phase of <it>C. glutamicum</it>, based on the analysis of the time courses of <sup>13</sup>C incorporation into proteinogenic amino acids by gas chromatography-mass spectrometry (GC-MS). The flux from phosphoenolpyruvate (PEP) to oxaloacetate (Oxa) catalyzed by phosphoenolpyruvate carboxylase (PEPc) was active in the growth phase not producing glutamate, whereas that from pyruvate to Oxa catalyzed by pyruvate carboxylase (Pc) was inactive. In the glutamate overproduction phase induced by the addition of the detergent material Tween 40, the reaction catalyzed by Pc also became active in addition to the reaction catalyzed by PEPc.</p> <p>Conclusion</p> <p>It was clarified by a quantitative <sup>13</sup>C MFA that the reaction catalyzed by Pc is most markedly increased, whereas other fluxes of PEPc and PEPck remain constant in the glutamate overproduction induced by Tween 40. This result is consistent with the previous results obtained in a comparative study on the glutamate productions of genetically recombinant Pc- and PEPc-overexpressing strains. The importance of a specific reaction in an anaplerotic pathway was elucidated at a metabolic level by MFA.</p

    Chronic Treatment with Metformin Has No Disrupting Effect on the Hepatic Circadian Clock in Mice

    No full text
    Background and Objectives: The antidiabetic agent metformin is known to activate AMP-activated protein kinase (AMPK) in various tissues. Because AMPK can modulate intracellular circadian clocks through regulating the stability of clock components, a single dose of metformin has been reported to affect circadian clocks in the peripheral tissues. In this study, therefore, we investigated whether chronic treatment with metformin causes the impairment of circadian clocks, especially if given at an inappropriate time. Materials and Methods: Non-diabetic C57BL/6J mice were allowed access to food only during 4 h at the beginning of the dark period, and repeatedly i.p. injected with a nearly maximum non-toxic dose of metformin, once daily either at 4 h after the beginning of the dark period or at the beginning of the light period. Diabetic ob/ob mice were given free access to food and treated with metformin in drinking water. Results: Under the controlled feeding regimen, 8-day treatment with metformin did not alter the mRNA expression rhythms of clock genes in both liver and adipose tissue of C57BL/6J mice, regardless of dosing time. In addition, chronic treatment with metformin for 2 weeks affected hepatic AMPK activation rhythm but did not disrupt the circadian clocks in the liver and adipose tissues of the ob/ob mice. Conclusions: These results mitigate concerns that treatment with metformin impairs peripheral circadian clocks, although confirmation is needed in humans

    Incomplete Polymerization of Dual-Cured Resin Cement Due to Attenuated Light through Zirconia Induces Inflammatory Responses

    No full text
    Zirconia restorations are becoming increasingly common. However, zirconia reduces the polymerization of dual-cured resin cement owing to light attenuation, resulting in residual resin monomers. This study investigated the effects of dual-cured resin cement, with incomplete polymerization owing to attenuated light through zirconia, on the inflammatory response in vitro. The dual-cured resin cement (SA Luting Multi, Kuraray) was light-irradiated through zirconia with three thickness diameters (1.0, 1.5, and 2.0 mm). The light transmittance and the degree of conversion (DC) of the resin cement significantly decreased with increasing zirconia thickness. The dual-cured resin cement in 1.5 mm and 2.0 mm zirconia and no-irradiation groups showed significantly higher amounts of hydroxyethylmethacrylate and triethyleneglycol dimethacrylate elution and upregulated gene expression of proinflammatory cytokines IL-1β and IL-6 from human gingival fibroblasts (hGFs) and TNFα from human monocytic cells, compared with that of the 0 mm group. Dual-cured resin cement with lower DC enhanced intracellular reactive oxygen species (ROS) levels and activated mitogen-activated protein (MAP) kinases in hGFs and monocytic cells. This study suggests that dual-cured resin cement with incomplete polymerization induces inflammatory responses in hGFs and monocytic cells by intracellular ROS generation and MAP kinase activation

    Physical activity and bone : the importance of the various mechanical stimuli for bone mineral density : a review

    No full text
    Numerous studies have reported benefits of regular physical activity on bone mineral density (BMD). The effects of physical activity on BMD are primarily linked to the mechanisms of mechanical loading, but the understanding of the precise mechanism behind the association is incomplete. The aim of this paper was to review the main findings concerning sources and types of mechanical stimuli in relation to BMD. Mechanical forces that act on bone are generated from impact with the ground (ground-reaction forces) and from skeletal muscle contractions (muscle forces or muscle-joint forces), but the relative importance of these two sources has not been elucidated. Both muscle-joint forces and gravitational forces seem to be able to induce bone adaptation independently, and there may be differences in the importance of loading sources at different skeletal sites. The nature of the stimuli is affected by the type, intensity, frequency, and duration of the activity. The activity should be dynamic, not static, and the magnitude and rate of the stimuli should be high. In accordance with this, cross-sectional studies report highest BMD in athletes of high-impact activities such as dancing, soccer, volleyball, basketball, squash, speed skating, gymnastics, hockey, and step-aerobics. Endurance activities such as orienteering, skiing, and triathlon seem to be beneficial to a lesser degree, whereas low-impact activities such as swimming and cycling are associated with lower BMD than controls. Both the intensity and frequency of the activity should be varied and increased beyond the habitual level. Duration of the activity seems to be less important, and a few loading cycles seem to be sufficient

    Study on roles of anaplerotic pathways in glutamate overproduction of by metabolic flux analysis-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Study on roles of anaplerotic pathways in glutamate overproduction of by metabolic flux analysis"</p><p>http://www.microbialcellfactories.com/content/6/1/19</p><p>Microbial Cell Factories 2007;6():19-19.</p><p>Published online 23 Jun 2007</p><p>PMCID:PMC1919393.</p><p></p>s in the growth and production phases, where glutamate fluxes were 20 and 68, respectively. In this study, the fluxes with backward (exchange) reactions, i.e., those in glycolysis, the pentose phosphate pathway, the latter steps of the TCA cycle (succinate → oxaloacetate), and C1 metabolisms, are shown as net values [22]. Abbreviations: Gly, glycine; Ser, serine; Glu, glutamate; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; GAP, glyceraldehyde-3-phosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; Xu5P, xylulose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; AcCoA, acetyl-CoA; IsoCit, isocitrate; αKG, 2-oxoglutarate; Suc, succinate; Fum, fumarate; Mal, malate; Oxa, oxaloacetate

    UV light-emitting diode (UV-LED) at 265 nm as a potential light source for disinfecting human platelet concentrates.

    No full text
    The risk of sepsis through bacterial transmission is one of the most serious problems in platelet transfusion. In processing platelet concentrates (PCs), several methods have been put into practice to minimize the risk of bacterial transmission, such as stringent monitoring by cultivation assays and inactivation treatment by photoirradiation with or without chemical agents. As another potential option, we applied a light-emitting diode (LED) with a peak emission wavelength of 265 nm, which has been shown to be effective for water, to disinfect PCs. In a bench-scale UV-LED exposure setup, a 10-min irradiation, corresponding to an average fluence of 9.2 mJ/cm2, resulted in >2.0 log, 1.0 log, and 0.6 log inactivation (mean, n = 6) of Escherichia coli, Staphylococcus aureus, and Bacillus cereus, respectively, in non-diluted plasma PCs. After a 30-min exposure, platelet counts decreased slightly (18 ± 7%: mean ± SD, n = 7); however, platelet surface expressions of CD42b, CD61, CD62P, and PAC-1 binding did not change significantly (P>0.005), and agonist-induced aggregation and adhesion/aggregation under flow conditions were well maintained. Our findings indicated that the 265 nm UV-LED has high potential as a novel disinfection method to ensure the microbial safety of platelet transfusion
    corecore