86 research outputs found

    RAISE-3 for Agile On-Orbit Demonstration of Innovative Satellite Technologies: Mission Definition and Conceptual Design

    Get PDF
    The Japan Aerospace Exploration Agency (JAXA) has selected on-orbit demonstration missions for the Innovative Satellite Technology Demonstration-3 project in May 2020, as part of the Innovative Satellite Technology Demonstration Program. Seven on-orbit demonstration missions were selected in a category of parts, components and subsystems and those missions will be demonstrated onboard the RApid Innovative payload demonstration SatellitE-3 (RAISE-3). This 100kg-class satellite developed by JAXA is a flagship of the Innovative Satellite Technology Demonstration-3 fleet. This paper describes an overview of the demonstration missions and system specifications of RAISE-3, as well as results of conceptual design of the satellite and a partial application of digital development process to an initial phase of the project. Further, project plan and technical challenges to be studied in a project implementation phase are also discussed

    Five-minute resolved spatial distribution of radiocesium in sea sediment derived from the Fukushima Dai-ichi Nuclear Power Plant

    Get PDF
    AbstractThe spatial distributions of radiocesium concentration in sea sediment to a core depth of 14 cm were investigated in the offshore region from the Fukushima Prefecture to the northern part of the Ibaraki Prefecture in February and July 2012, at a spatial resolution of 5 min of latitude and longitude. The concentrations in the area south of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) were generally higher than those in the area north of it. In the southern area, a band of especially high concentration with a width about 20 km was present in the region shallower than 100 m, and a narrow minimal concentration band was found along the 200-m isobaths. In more than half of all cases, the vertical core profiles of radiocesium concentration generally showed an exponential decreasing trend with depth. However, in the area north of the FDNPP, where the radiocesium concentrations tended to be very low, radiocesium concentrations that had similar or larger magnitude compared with those of the most-surface layer were often found in deeper layers. Relatively good correlations were found between radiocesium concentrations and grain sizes of the most-surface sediment. The vertical profile of radiocesium concentration also had a relationship with grain size. In other case, the radiocesium concentration in the sediment seems to have had a dependence on the radiocesium concentration in bottom seawater, suggesting that the quantity of radiocesium supplied and the grain size were major factors determining the spatial distribution pattern of the radiocesium concentration after the FDNPP accident

    Scalable and template-free production of mesoporous calcium carbonate and its potential to formaldehyde adsorbent

    Get PDF
    Here we report a scalable and template-free production strategy 1 in the synthesis of a mesoporous calcium carbonate, which undergoes self-assembled nanostructure formation through a temperature-induced aggregation and polymorphic transformation of the colloids. The specific surface area and pore size distribution of resulting mesoporous calcium carbonate are clearly different depending on the aging temperature. The specific surface area and average pore size for aging temperature of 293 K are 207.3 ± 9.8 m2/g and 8.8±0.6 nm, respectively, and 65.1 ± 10.1 m2/g and 19.9±2.6 nm at 473 K. Additionally, we apply the mesoporous calcium carbonate powder to formaldehyde vapor adsorbent. We measure the adsorbed amount of gaseous formaldehyde and find that the vaterite-rich powder has larger adsorption per unit area than the calcite-rich one

    An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice

    Get PDF
    Recently, it has been reported that the Notch pathway is involved in the pathogenesis of diabetic nephropathy. In this study, we investigated the activation of the Notch pathway in Ins2 Akita diabetic mouse (Akita mouse) and the effects of telmisartan, an angiotensin II type1 receptor blocker, on the Notch pathway. The intracellular domain of Notch1 (ICN1) is proteolytically cleaved from the cell plasma membrane in the course of Notch activation. The expression of ICN1 and its ligand, Jagged1, were increased in the glomeruli of Akita mice, especially in the podocytes. Administration of telmisartan significantly ameliorated the expression of ICN1 and Jagged1. Telmisartan inhibited the angiotensin II-induced increased expression of transforming growth factor β and vascular endothelial growth factor A which could directly activate the Notch signaling pathway in cultured podocytes. Our results indicate that the telmisartan prevents diabetic nephropathy through the inhibition of the Notch pathway

    Molecular Basis of White Adipose Tissue Remodeling That Precedes and Coincides With Hibernation in the Syrian Hamster, a Food-Storing Hibernator

    Get PDF
    Mammalian hibernators store fat extensively in white adipose tissues (WATs) during pre-hibernation period (Pre-HIB) to prepare for hibernation. However, the molecular mechanisms underlying the pre-hibernation remodeling of WAT have not been fully elucidated. Syrian hamsters, a food-storing hibernator, can hibernate when exposed to a winter-like short day photoperiod and cold ambient temperature (SD-Cold). Animals subjected to prolonged SD-Cold had smaller white adipocytes and beige-like cells within subcutaneous inguinal WAT (iWAT). Time-course analysis of gene expression with RNA-sequencing and quantitative PCR demonstrated that the mRNA expression of not only genes involved in lipid catabolism (lipolysis and beta-oxidation) but also lipid anabolism (lipogenesis and lipid desaturation) was simultaneously up-regulated prior to hibernation onset in the animals. The enhanced capacity of both lipid catabolism and lipid anabolism during hibernation period (HIB) is striking contrast to previous observations in fat-storing hibernators that only enhance catabolism during HIB. The mRNA expression of mTORC1 and PPAR signaling molecules increased, and pharmacological activation of PPARs indeed up-regulated lipid metabolism genes in iWAT explants from Syrian hamsters. These results suggest that the Syrian hamster rewires lipid metabolisms while preparing for hibernation to effectively utilize body fat and synthesize it from food intake during HIB

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    Novel quantitative immunohistochemical analysis for evaluating PD-L1 expression with phosphor-integrated dots for predicting the efficacy of patients with cancer treated with immune checkpoint inhibitors

    Get PDF
    IntroductionProgrammed cell death ligand 1 (PD-L1) expression in tumor tissues is measured as a predictor of the therapeutic efficacy of immune checkpoint inhibitors (ICIs) in many cancer types. PD-L1 expression is evaluated by immunohistochemical staining using 3,3´-diaminobenzidine (DAB) chronogenesis (IHC-DAB); however, quantitative and reproducibility issues remain. We focused on a highly sensitive quantitative immunohistochemical method using phosphor-integrated dots (PIDs), which are fluorescent nanoparticles, and evaluated PD-L1 expression between the PID method and conventional DAB method.MethodsIn total, 155 patients with metastatic or recurrent cancer treated with ICIs were enrolled from four university hospitals. Tumor tissue specimens collected before treatment were subjected to immunohistochemical staining with both the PID and conventional DAB methods to evaluate PD-L1 protein expression.ResultsPD-L1 expression assessed using the PID and DAB methods was positively correlated. We quantified PD-L1 expression using the PID method and calculated PD-L1 PID scores. The PID score was significantly higher in the responder group than in the non-responder group. Survival analysis demonstrated that PD-L1 expression evaluated using the IHC-DAB method was not associated with progression-free survival (PFS) or overall survival (OS). Yet, PFS and OS were strikingly prolonged in the high PD-L1 PID score group.ConclusionQuantification of PD-L1 expression as a PID score was more effective in predicting the treatment efficacy and prognosis of patients with cancer treated with ICIs. The quantitative evaluation of PD-L1 expression using the PID method is a novel strategy for protein detection. It is highly significant that the PID method was able to identify a group of patients with a favorable prognosis who could not be identified by the conventional DAB method

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore