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Abstract: Here we report a scalable and template-free production strategy in the synthesis 1 

of a mesoporous calcium carbonate, which undergoes self-assembled nanostructure 2 

formation through a temperature-induced aggregation and polymorphic transformation of 3 

the colloids. The specific surface area and pore size distribution of resulting mesoporous 4 

calcium carbonate are clearly different depending on the aging temperature. The specific 5 

surface area and average pore size for aging temperature of 293 K are 207.3±9.8 m
2
/g and 6 

8.8±0.6 nm, respectively, and 65.1±10.1 m
2
/g and 19.9±2.6 nm at 473 K. Additionally, we 7 

apply the mesoporous calcium carbonate powder to formaldehyde vapor adsorbent. We 8 

measure the adsorbed amount of gaseous formaldehyde and find that the vaterite-rich 9 

powder has larger adsorption per unit area than the calcite-rich one. 10 

 11 
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1. Introduction 1 

    Calcium carbonate is one of the most abundant minerals and is widely used in industry 2 

as a raw material for cement, paper coating, and medicines, among others. The organization 3 

of its primary building units into hollow and porous superstructures is of considerable 4 

interest due to their promising applications in controllable release and encapsulation of 5 

drugs [Sukhorukov et al. 2004; Wei et al. 2008; Fujiwara et al. 2010], catalyst support 6 

[García-Mota et al. 2011], gas adsorbent [Zhao et al. 2011], as well as biomimetics [Addadi 7 

et al. 2003; Faatz et al. 2004; Xu et al. 2007]. Thus far, there have been two main processes 8 

capable of producing ordered superstructures of calcium carbonate. One is surface 9 

crystallization on templates [Walsh and Mann 1995; Tomioka et al. 2011], and the other is 10 

non-classical crystallization via colloidal intermediates [Cölfen and Mann 2003]. 11 

Nevertheless, large-scale production involving porous superstructure formation of calcium 12 

carbonate remains challenging. Organized assemblies or soft templates have been 13 

commonly used for polymorph-controlled synthesis of calcium carbonate crystals [Qi et al. 14 

2002; Yang et al. 2003]. Besides conventional crystallizations, ordered superstructures (i.e. 15 

mesocrystals) can be assembled from nanoscopic building units, in what is known as 16 

“non-classical” crystallization [Jongen et al. 2000; Cölfen and Mann 2003; Wang et al. 17 

2005]. In this case, a soluble additive with well-defined concentration mediates the 18 

mesoscale transformation. These researches have not only offered important contributions 19 

to an understanding of biomineralization, also opened up the promising applications. 20 

    Various porous materials with huge specific surface areas such as activated carbon 21 

[Rong et al. 2003; Lee et al. 2010; Carter et al. 2011; Wen et al. 2011], silica [Srisuda and 22 

Virote. 2008], and hydroxyapatite [Kawai et al. 2006] have received much attention as 23 
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highly effective adsorbents for formaldehyde vapor. Formaldehyde, which is one of the 1 

most representative volatile organic compound, is highly toxic to humans. In our previous 2 

work [Yamanaka et al. 2013], we reported effective uses for discarded scallop shells as a 3 

formaldehyde adsorbent. We found that the specific surface area of the shell particles was 4 

positively correlated with the adsorbed amount of formaldehyde vapor. 5 

     We now demonstrate how mesoporous calcium carbonate powder applies to 6 

formaldehyde vapor adsorbent. We present a scalable production system of mesoporous 7 

calcium carbonate by means of an industrial carbonation process. In this process, 8 

self-assembled nanostructure formation takes place via Brownian aggregation of nanoscale 9 

building units in a colloidal intermediate dispersion. We then investigate the effect of 10 

thermal energy on the self-assembled pore structure and crystal polymorphs. 11 

 12 

2. Experimental procedure 13 

2.1 Materials and synthesis of porous calcium carbonate 14 

Calcium hydroxide was purchased from Nacalai Tesque Inc., and ethylene glycol and 15 

ethanol were purchased from Kanto Chemical Co., Inc. Calcium carbonate was prepared by 16 

carbonation of calcium hydroxide in ethylene glycol–ethanol organic solvent mixture 17 

[Yasue et al. 1985]. Calcium hydroxide (25.0 g) was mixed with the mixture of ethylene 18 

glycol and ethanol (3:7 by weight to yield a total weight of 475.0 g) in the crystallizer. 19 

Calcium hydroxide reacted with CO2 introduced from the bottom of the crystallizer, in 20 

which the stirring was conducted at the rate of 400 rpm. CO2 was blended with N2 at the 21 

concentration of 30 vol%, and the flow rate of CO2 was 0.3 l/min. The carbonation reaction 22 

temperature was controlled at 293 K using a water bath. After the carbonation, the 23 
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suspension was centrifuged at 3,500 rpm for 30 min. The transparent supernatant was aged 1 

at a predetermined temperature. The subsequent treatment deals with the unnecessary 2 

organic solvent. The cloudy suspension was washed twice with ethanol to eliminate the 3 

excess ethylene glycol. The suspension was then centrifuged at 3,500 rpm for 20 min. The 4 

supernatant was then discarded, and the residue was dried in vacuum for 12 h. The resulting 5 

dry powder was used in the measurements. 6 

 7 

2.2 Characterization 8 

The specific surface area of the resulting samples was determined by nitrogen gas 9 

adsorption based on the multi-point BET method. Pore size distribution was determined by 10 

the BJH method. Both analyses were conducted on Autosorb-1-c/MK2 (Qantachrome, 11 

USA). In the BET and pore size distribution measurements, the samples were degassed for 12 

2 h at 473 K under a vacuum to remove adsorbed solvent molecules. To determine the 13 

crystal structure, X-ray diffraction (XRD, MultiFlex, Rigaku, Japan) powder patterns of the 14 

samples were obtained with Cu Kα radiation (40 kV, 40 mA). SEM studies were performed 15 

using a JEOL JSM-6380A. The TEM image and selected area electron diffractions 16 

(SAEDs) were taken on a JEM-2100F operated at 200 kV after the sample powder was 17 

transferred onto a carbon-coated TEM grid. 18 

 19 

2.3 Formaldehyde adsorption 20 

    The amount of adsorbed formaldehyde was measured by the constant volume method 21 

at 293 K, using a home-built vacuum line system. The procedure for the adsorption test is 22 

described in detail elsewhere [Yamanaka et al. 2013]. Briefly, the samples (0.2 g) were 23 
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precisely weighed in a bag made of non-woven fabric. Samples were placed into a 1 

cross-shaped cell and dried in vacuum overnight. Formaldehyde vapor (1866 Pa of total 2 

pressure) was introduced into the cell connected to the vacuum line. After the total pressure 3 

was reduced to 1600 Pa for adsorbing the vapor, we increased the total pressure to 1866 Pa, 4 

and this sequence was repeated until the system achieved equilibrium. The pressure 5 

difference before and after adsorption was then measured. Mole fraction of formaldehyde 6 

in the vapor phase is not equal that in the liquid phase because formaldehyde is a polar 7 

organic compound. Then, the amount of substance per unit sample weight was calculated 8 

from the equation of state for an ideal gas with an added correction factor of 0.27 9 

[Yamanaka et al. 2013], and the amount of substance per unit sample area was obtained 10 

from its specific surface area. 11 

 12 

3. Results and discussion 13 

    In an industrial production system, calcium carbonate is produced on a large scale by 14 

carbonation of calcium hydroxide in water. We believe that our synthesis method is easily 15 

applied to an industrial system because we just switch the solvent from water to the organic 16 

solvent mixture. A schematic description of production of porous calcium carbonates is 17 

given in Fig. 1. We prepared a transparent dispersion of calcium carbonate nanoparticles 18 

(Fig. 1a), the starting liquid material for porous calcium carbonate particles, by carbonation 19 

of calcium hydroxide in ethylene glycol–ethanol organic solvent mixture (see section 2.1). 20 

Prepared liquid is a colloidal dispersion because it is transparent but exhibits the Tyndall 21 

effect. The solid fraction of the dispersion was calculated from the weight loss at 773 K 22 

using thermogravimetric-differential thermal analysis (TG-DTA; Seiko Instruments Exstar 23 
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6200N, 50 ml/min nitrogen flow, 10 K/min ramp). The solid fraction was 5.5±0.2 mass%, 1 

with a yield of about 80%. The dispersion was then aged for a predetermined time to 2 

provide a thermal energy that leads to Brownian aggregation of the calcium carbonate 3 

nanoparticles via a gel (Fig. 1b). The organized pore structure of the calcium carbonate 4 

particles was controlled by aging temperature, because the Brownian aggregation rate and 5 

structural phase transition depend on temperature. During the aging process, the time for a 6 

transparent dispersion to become cloudy sol was 1 hour at 353 K, and 2 days at 293 K, for 7 

example. 8 

     We present first the characterization results for the porous calcium carbonate particles. 9 

The particle properties are summarized in Table 1. The specific surface area and pore size 10 

distribution highly differed according to the aging temperature. The specific surface area 11 

and average pore size for aging temperature of 293 K were 207.3±9.8 m
2
/g and 8.8±0.6 nm, 12 

respectively, and 65.1±10.1 m
2
/g and 19.9±2.6 nm at 473 K (Fig. 2a, e, and see Table 1). 13 

Figure 1c shows typical SEM images of the porous calcium carbonate particles obtained for 14 

aging temperatures of 293 K and 473 K. At low aging temperature, the particles form 15 

ellipsoidal structure, and dumbbell or rod-like structure at higher temperature. The major 16 

and minor axis size for the ellipsoidal shape of calcium carbonate were 0.63±0.07 and 17 

0.33±0.04 μm, respectively, and 1.45±0.36 and 0.40±0.07 μm for the dumbbell-like shape 18 

(see Table 1).  19 

    The peak positions of XRD profiles agree with those of the calcite (ICDD#05-0586) 20 

and/or vaterite (ICDD#33-0268) crystal for all samples (the corresponding results of the 21 

XRD profiles are shown in Fig. 3). The intensities of the calcite diffraction peaks decrease 22 

with increasing aging temperature, as the vaterite peaks rose up. The ratio of vaterite to 23 
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calcite crystal (fV) calculated from Rao's equation below [Rao 1973].  1 

 2 

 3 

 4 

The subscript V and C indicate vaterite and calcite, respectively. The ratio of vaterite (fV) 5 

increased with temperature (see Table 1). TEM observation revealed that the ellipsoidal 6 

structure was composed of minute calcite particles (Fig. 2b–d), whereas dumbbell-like 7 

structure had hierarchical vaterite framework (Fig. 2f–h). 8 

     Generally, three types of crystalline calcium carbonate (calcite, aragonite, and 9 

vaterite) are crystallized from amorphous calcium carbonate (ACC) [Addadi et al. 2003; 10 

Cölfen and Mann 2003; Faatz et al. 2004]. In the carbonation reaction, the initially formed 11 

ACC is immediately transformed into vaterite and calcite [Wei et al. 2003; Han et al. 2005]. 12 

Recently, Rodriguez-Blanco et al. reported the kinetics and mechanism of ACC 13 

crystallization and found that the calcite was formed via dissolution of vaterite and 14 

subsequent reprecipitation [Rodriguez-Blanco et al. 2011]. Thus the solubility of calcium 15 

carbonate is crucial for the transformation [Hadiko et al. 2005]. Naka et al. successfully 16 

prepared stable vaterite particles by a delayed addition of polyacrylic acid (PAA) after the 17 

crystallization of calcium carbonate in the aqueous solution [Naka et al. 2006]. They 18 

concluded the vaterite particles were stable in consequence of binding PAA with calcium 19 

ions, which prevented phase transformation into calcite. Additionally, the solubility of 20 

calcium carbonate decreased in the mixture of ethylene glycol and water [Flatena et al. 21 

2010] compared with pure water. Because the carbonation process in this study contains 22 

little water, the dissolution of vaterite, i.e. transformation into calcite should not occur. The 23 
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above discussion and the observation results indicate that there are two transformation 1 

routes: one is transformation from amorphous to calcite, the other is into vaterite. Figures 2 

1d–f schematically illustrate the effect of aging temperature on the formation of porous 3 

calcium carbonate. As previously mentioned, the primary size of nanoparticles in the 4 

colloidal dispersion aggregated together was associated with the weak repulsive force (Fig. 5 

1d), because electrostatic interactions are negligible in such a relatively low dielectric 6 

constant medium [Israelachvili 1992]. At the same time, phase transition from unstable 7 

amorphous to stable calcite or metastable vaterite was also taking place (Fig. 1e). The 8 

colloidal particles undergo more preferable self-assembly to form ellipsoidal or 9 

dumbbell-shape aggregated structures, resulting from the reduction of the surface free 10 

energy [Guo et al. 2010]. When the system temperature is high, the metastable vaterite 11 

particles are formed, which drives them into forming layered stacking structures (Fig. 1f). 12 

In another one of our experiments, where the aging temperature was set to 293, 313, 333, 13 

353, and 473 K, the vaterite-rich particles increased with the aging temperature as shown in 14 

Fig. 4a. 15 

     In our previous work using scallop shells (calcite) [Yamanaka et al. 2013], we 16 

demonstrated formaldehyde adsorption for nanosized shell particles that were prepared by 17 

planetary ball milling and subsequent water addition. The largest specific surface area for 18 

the ground shell was 54.4 m
2
/g, and the maximum adsorbed amount of formaldehyde vapor 19 

was 1.1 mg/g. This value was a significant improvement in the adsorption amount 20 

compared to the feed shell particles (0.1 mg/g). We then reported that the specific surface 21 

area of the scallop shell particles was positively correlated with the adsorbed amount of 22 

formaldehyde vapor per unit weight of the shell particle. 23 
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    In this work, we have successfully prepared mesoporous calcium carbonate with a 1 

large specific surface area of 207.3 m
2
/g (the ratio of vaterite crystal, fV, was 0.11). The 2 

adsorbed amount of formaldehyde per unit weight was 8.2 mg/g, indicating specific surface 3 

area had a large influence on the formaldehyde adsorption, as expected. While using the 4 

vaterite-rich calcium carbonate (fV was 0.88, and specific surface area was 65.1±10.1 m
2
/g), 5 

the adsorbed amount was 6.7 mg/g, which was approximately 6 times higher per unit 6 

weight, although its specific surface area was approximately equal to that of above ground 7 

scallop shell particles. We now focus on the adsorbed amount of formaldehyde per unit area 8 

(see section 2.3). As shown in Fig. 4b, the adsorbed amount per unit area increased with 9 

increasing ratio of vaterite crystal. The vaterite-rich sample (fV=0.88, 0.11 mg/m
2
) had ca. 4 10 

times higher adsorption capacity per unit area than the calcite-rich one (fV=0.11, 0.03 11 

mg/m
2
). It should be noted that the vaterite has a structure that enables it to adsorb 12 

formaldehyde easily. We measured FTIR spectra for calcite-rich and vaterite-rich calcium 13 

carbonate before and after formaldehyde adsorption (data not shown). We did not detect 14 

any differences other than the different polymorphs of calcium carbonate. This observation 15 

makes it difficult to explain the contributions of surface structure on the adsorption capacity. 16 

The modeled surface energies of vaterite are in the range 0.62–1.58 J/m
2
 for the anhydrous 17 

surface, which is higher than that of calcite (104) surface (0.59 J/m
2
) [de Leeuw and Parker 18 

1998]. The favorable structure for gas adsorption reflects the surface energy and the 19 

thermodynamic stability of the polymorphs. We believe that the porous calcium carbonate 20 

presented here may also be a promising drug carrier material or template, due to its 21 

characteristic superstructure and very high specific surface area. 22 

 23 



 

10 

4. Conclusion 1 

We have demonstrated a scalable production method for mesoporous calcium 2 

carbonate of which maximum specific surface area was 207.3 m
2
/g. We have also assessed 3 

its potential use as a formaldehyde vapor adsorbent. The vaterite was an appropriate 4 

polymorph of calcium carbonate in formaldehyde vapor adsorption compared to the calcite. 5 

 6 
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Figure captions 

Fig. 1 (a) Starting liquid material for porous calcium carbonate particles. (b) After the 

dispersion was aged for a predetermined amount of time, it became cloudy via a gelling 

state. (c) Typical SEM images of the porous calcium carbonate particles obtained by aging 

at 293 K and 473 K. The scale bar is 1 μm. (d, e, and f) Schematic illustration of the effect 

of aging temperature on the formation process of porous calcium carbonate. (d) Primary 

size of nanoparticles in the colloidal dispersion. (e) Primary particles are aggregated 

together due to the weak repulsive force; while phase transition from unstable amorphous 

to stable calcite or metastable vaterite occurs. (f) Finally, the colloidal particles undergo a 

more preferable self-assembly to form ellipsoidal or dumbbell-shape aggregated structures. 

 

Fig. 2 Some features of the samples obtained by aging at 293 K (a–d), and 473 K (e–h). (a) 

BJH pore size distributions measured from nitrogen isotherm plots, (b) TEM image, (c) 

magnified image, and (d) SAED patterns obtained by electron diffraction study. (e) BJH 

pore size distributions, (f) TEM image, (g) magnified image, and (h) SAED patterns of the 

particle. 

 

Fig. 3 Typical XRD patterns of the prepared particles. The upper one is a sample obtained 

at 473 K, and the lower one at 293 K aging temperature. The crystallite size was 15 nm for 

(104) calcite, and 14 nm for (112) vaterite. The values almost coincide with the primary 

particle size from each TEM image (see Fig. 2c and g). The crystallite size was calculated 

from the full width at half maximum (FWHM) of the corrected diffraction profile. A 

Pseudo-Voigt fitting was conducted to obtain the FWHM for the (104) calcite and (112) 
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vaterite diffraction. 

 

Fig. 4 (a) The effect of the aging temperature on the crystal structure of porous calcium 

carbonate. The ratio of vaterite crystal was calculated from Rao's equation [Rao 1973]. (b) 

Relation between the ratio of vaterite phase and adsorbed amount of formaldehyde per unit 

area for formaldehyde concentration of 1560 mg/m
3
. 
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Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

250 300 350 400 450 500

R
at

io
 o

f 
v

at
er

it
e 

p
h
as

e,
 f

V
 [

-]

Aging temperature [K]

0.00

0.05

0.10

0.15

0 0.2 0.4 0.6 0.8 1

A
d
so

rb
ed

 a
m

o
u
n
t 

p
er

 u
n
it

 a
re

a 
[m

g
/m

2
]

Ratio of vaterite phase, f
V
 [-]

(a) 

(b) 



 

2
1

 

T
a
b
le

 

 

T
a
b

le
 1

 C
h
ar

ac
te

ri
za

ti
o
n
 r

es
u
lt

s 
o
f 

p
o
ro

u
s 

ca
lc

iu
m

 c
ar

b
o
n
at

e
 

A
g
in

g
 t

em
p

er
at

u
re

 

[K
] 

f V
1
 

[-
] 

P
ar

ti
cl

e 
si

ze
2
 

[μ
m

] 

B
E

T
 s

p
ec

if
ic

 s
u
rf

ac
e 

ar
ea

 

[m
2
/g

] 

T
o
ta

l 
p

o
re

 v
o
lu

m
e 

[c
m

3
/g

] 

M
ea

n
 p

o
re

 s
iz

e 

 
[n

m
] 

2
9
3
 

0
.2

2
 

m
aj

o
r 

ax
is

: 
0
.6

3
±

0
.0

7
 

m
in

o
r 

ax
is

: 
0
.3

3
±

0
.0

4
 

2
0
7
.3

±
9
.8

 
0
.4

5
4
±

0
.0

3
4
 

8
.8

±
0
.6

 

4
7
3
 

0
.8

8
 

m
aj

o
r 

ax
is

: 
1
.4

5
±

0
.3

6
 

m
in

o
r 

ax
is

: 
0
.4

0
±

0
.0

7
 

6
5
.1

±
1
0
.1

 
0
.3

1
7
±

0
.0

2
0
 

1
9
.9

±
2
.6

 

1
f V

 d
en

o
te

s 
th

e 
ra

ti
o
 o

f 
v
at

er
it

e 
to

 c
al

ci
te

 c
al

cu
la

te
d
 f

ro
m

 X
R

D
 i

n
te

n
si

ty
. 

2
M

ea
su

re
d
 1

0
0
 p

ar
ti

cl
es

 f
ro

m
 e

ac
h
 S

E
M

 i
m

ag
e.

 

  


