693 research outputs found

    NMR and NQR study of pressure-induced superconductivity and the origin of critical-temperature enhancement in the spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41}

    Get PDF
    Pressure-induced superconductivity was studied for a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} using nuclear magnetic resonance (NMR) under pressures up to the optimal pressure 3.8 GPa. Pressure application leads to a transitional change from a spin-gapped state to a Fermi-liquid state at temperatures higher than TcT_c. The relaxation rate 1/T11/T_1 shows activated-type behavior at an onset pressure, whereas Korringa-like behavior becomes predominant at the optimal pressure, suggesting that an increase in the density of states (DOS) at the Fermi energy leads to enhancement of TcT_c. Nuclear quadrupole resonance (NQR) spectra suggest that pressure application causes transfer of holes from the chain to the ladder sites. The transfer of holes increases DOS below the optimal pressure. A dome-shaped TcT_c versus pressure curve arises from naive balance between the transfer of holes and broadening of the band width

    Dynamic fluctuations in the superconductivity of NbN films from microwave conductivity measurements

    Full text link
    We have measured the frequency and temperature dependences of complex ac conductivity, \sigma(\omega)=\sigma_1(\omega)-i\sigma_2(\omega), of NbN films in zero magnetic field between 0.1 to 10 GHz using a microwave broadband technique. In the vicinity of superconducting critical temperature, Tc, both \sigma_1(\omega) and \sigma_2(\omega) showed a rapid increase in the low frequency limit owing to the fluctuation effect of superconductivity. For the films thinner than 300 nm, frequency and temperature dependences of fluctuation conductivity, \sigma(\omega,T), were successfully scaled onto one scaling function, which was consistent with the Aslamazov and Larkin model for two dimensional (2D) cases. For thicker films, \sigma(\omega,T) data could not be scaled, but indicated that the dimensional crossover from three dimensions (3D) to 2D occurred as the temperature approached Tc from above. This provides a good reference of ac fluctuation conductivity for more exotic superconductors of current interest.Comment: 8 pages, 7 Figures, 1 Table, Accepted for publication in PR

    Experimental observation of the crystallization of a paired holon state

    Full text link
    A new excitation is observed at 201 meV in the doped-hole ladder cuprate Sr14_{14}Cu24_{24}O41_{41}, using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the direction of the rungs. The excitation is found to be of charge nature, with a temperature independent excitation energy, and can be understood via an intra-ladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder (CDWL_L), but persists above the CDWL_L transition temperature (TCDWLT_{CDW_L}), indicating a strong local pairing above TCDWLT_{CDW_L}. The 201 meV excitation vanishes in La6_{6}Ca8_{8}Cu24_{24}O41+δ_{41+\delta}, and La5_{5}Ca9_{9}Cu24_{24}O41_{41} which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below TCDWT_{CDW}.Comment: Accepted for publication in Physical Review Letters (4 figures

    Macroscopic Quantum Tunneling of a Fluxon in a Long Josephson Junction

    Full text link
    Macroscopic quantum tunneling (MQT) for a single fluxon moving along a long Josephson junction is studied theoretically. To introduce a fluxon-pinning force, we consider inhomogeneities made by modifying thickness of an insulating layer locally. Two different situations are studied: one is the quantum tunneling from a metastable state caused by a single inhomogeneity, and the other is the quantum tunneling in a two-state system made by two inhomogeneities. In the quantum tunneling from a metastable state, the decay rate is estimated within the WKB approximation. Dissipation effects on a fluxon dynamics are taken into account by the Caldeira-Leggett theory. We propose a device to observe quantum tunneling of a fluxon experimentally. Required experimental resolutions to observe MQT of a fluxon seem attainable within the presently available micro-fabrication technique. For the two-state system, we study quantum resonance between two stable states, i.e., macroscopic quantum coherence (MQC). From the estimate for dissipation coefficients due to quasiparticle tunneling, the observation of MQC appears to be possible within the Caldeira-Leggett theory.Comment: 30 pages LaTeX including 11 PS figures, using jpsj.sty. To be published on J. Phys. Soc. Jpn. Overestimates for damping amplitude is correcte

    Direct optical excitation of two and three magnons in α-Fe₂O₃

    No full text
    Direct excitation of two and three magnons is observed in midinfrared absorption and Raman scattering spectra of α-Fe₂O₃ crystals. These polarization characteristics and the spectra themselves are shown to be understood from group-theoretical point of view. The microscopic mechanism of three-magnon excitation is proposed in addition to that of well-known two-magnon excitation process

    Effect of a magnetic field on the spin- and charge-density wave order in La1.45Nd0.4Sr0.15CuO4

    Full text link
    The spin-density wave (SDW) and charge-density wave (CDW) order in superconducting La1.45Nd0.4Sr0.15CuO4 were studied under an applied magnetic field using neutron and X-ray diffraction techniques. In zero field, incommensurate (IC) SDW order appears below ~ 40 K, which is characterized by neutron diffraction peaks at (1/2 +/- 0.134, 1/2 +/- 0.134, 0). The intensity of these IC peaks increases rapidly below T_Nd ~ 8 K due to an ordering of the Nd^3+ spins. The application of a 1 T magnetic field parallel to the c-axis markedly diminishes the intensity below T_Nd, while only a slight decrease in intensity is observed at higher temperatures for fields up to 7 T. Our interpretation is that the c-axis field suppresses the parasitic Nd^3+ spin order at the incommensurate wave vector without disturbing the stripe order of Cu^2+ spins. Consistent with this picture, the CDW order, which appears below 60 K, shows no change for magnetic fields up to 4 T. These results stand in contrast to the significant field-induced enhancement of the SDW order observed in superconducting La2-xSrxCuO4 with x ~ 0.12 and stage-4 La2CuO4+y. The differences can be understood in terms of the relative volume fraction exhibiting stripe order in zero field, and the collective results are consistent with the idea that suppression of superconductivity by vortices nucleates local patches of stripe order.Comment: 7 pages, 5 figure
    corecore