25 research outputs found

    Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts

    Get PDF
    We developed a split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. In this assay, the N- and C-terminal fragments of Renilla reniforms luciferase are translationally fused to bait and prey proteins, respectively. When the proteins interact, split luciferase becomes activated and emits luminescence that can be measured by a microplate luminometer. Split luciferase activity was measured by first transforming protoplasts with a DNA vector in a 96-well plate. DNA vector expressing both bait and prey genes was constructed through two independent in vitro DNA recombinant reactions, Gateway and Cre-loxP. As proof of concept, we detected the protein-protein interactions between the nuclear histones 2A and 2B, as well as between membrane proteins SYP (syntaxin of plant) 51 and SYP61, in Arabidopsis protoplasts. © 2007 The Authors

    Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress

    Get PDF
    Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) is a key enzyme of the ascorbate (AsA)-glutathione cycle that maintains reduced pools of AsA and serves as an important antioxidative enzyme. Previously, we have cloned MDHAR cDNA from acerola (Malpighia glabra), a plant that accumulates abundant amount of AsA. In this study, MDHAR cDNA from acerola was introduced into tobacco plants using an Agrobacterium-mediated gene delivery system. Transgenic tobacco plants accumulated greater amounts of AsA and showed higher MDHAR activity than the control plants. Lipid peroxidation and chlorophyll degradation, which were stimulated in control plants, were restrained in transgenic plants subjected to salt stress. These results indicate that overexpression of acerola MDHAR imparts greater tolerance to salt stress. (C) 2011 SAAB. Published by Elsevier B.V. All rights reserved

    Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    Get PDF
    © 2014 Fujikawa et al. Background: The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results: A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions: A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome

    Ontogeny of gene expression of group IB phospholipase A(2) isoforms in the red sea bream, Pagrus (Chrysophrys) major

    Get PDF
    The red sea bream (Pagrus major) was previously found to express mRNAs for two group IB phospholipase A(2) (PLA(2)) isoforms, DE-1 and DE-2, in the digestive organs, including the hepatopancreas, pyloric caeca, and intestine. To characterize the ontogeny of the digestive function of these PLA(2)s, the present study investigated the localization and expression of DE-1 and DE-2 PLA(2) genes in red sea bream larvae/juveniles and immature adults, by in situ hybridization. In the adults, DE-1 PLA(2) mRNA was expressed in pancreatic acinar cells. By contrast, DE-2 PLA(2) mRNA was detected not only in digestive tissues, such as pancreatic acinar cells, gastric glands of the stomach, epithelial cells of the pyloric caeca, and intestinal epithelial cells, but also in non-digestive ones, including cardiac and lateral muscle fibers and the cytoplasm of the oocytes. In the larvae, both DE-1 and DE-2 PLA(2) mRNAs first appeared in pancreatic tissues at 3 days post-hatching (dph) and in intestinal tissue at 1 dph, and expression levels for both gradually increased after this point. In the juvenile stage at 32 dph, DE-1 PLA(2) mRNA was highly expressed in pancreatic tissue, and DE-2 PLA(2) mRNA was detected in almost all digestive tissues, including pancreatic tissue, gastric glands, pyloric caeca, and intestine, including the myomere of the lateral muscles. In conclusion, both DE-1 and DE-2 PLA(2) mRNAs are already expressed in the digestive organs of red sea bream larvae before first feeding, and larvae will synthesize both DE-1 and DE-2 PLA(2) proteins

    Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    Get PDF
    BACKGROUND: The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. RESULTS: A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. CONCLUSIONS: A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome

    Amino acid substitutions in CPC-LIKE MYB reveal residues important for protein stability in Arabidopsis roots.

    No full text
    TRYPTICHON (TRY) and ENHANCER OF TRY AND CPC2 (ETC2) encode R3-type MYB transcription factors that are involved in epidermal cell differentiation in Arabidopsis thaliana. TRY and ETC2 belong to the CPC-like MYB gene family, which includes seven homolog genes. Previously, we showed that among the CPC family members, TRY and ETC2 are characterized by rapid proteolysis compared with that of other members, and we demonstrated that this proteolysis is mediated by the proteasome-dependent pathway. In this study, we compared the functions of the wild-type TRY and ETC2 proteins and their amino acid-substituted versions. Our results showed that the substitution of amino acids in the C-terminal of TRY and ETC2 conferred them the ability to induce root hair formation. Furthermore, we confirmed that these mutations enhanced the stability of the TRY and ETC2 proteins. These results revealed that the amino acids, which are important for the functions of TRY and ETC2, mediate morphological pattern formation and can be useful in understanding the pathway determining the fate of root hair cells
    corecore