597 research outputs found

    Theoretical basis of SQUID-based artificial neurons

    Get PDF
    The physical basis of an artificial neuron is studied using a model that is based on the stochastic transition between two states in a double well potential. It is shown that the stochastic transition model generates an energy-defined sigmoid function acting as an activation (or transfer) function in neurons. The model is also applied to circuit neurons using superconducting quantum interference devices in artificial neural networks.PACS numbers: 87.19.ll, 85.25.Dq, 07.05.Mh.This work is supported in part by MEXT (17K05579)

    Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Get PDF
    Isotope fractionation between the common Cu species present in solution (Cu[+], Cu[2+], hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid–liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the [65]Cu/[63]Cu ratio fractionated by −1.06‰ to −0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl[−] via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ∼3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ[65]Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys
    corecore