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Theoretical basis of SQUID-based artificial neurons
Haruna Katayama,1 Toshiyuki Fujii,2 and Noriyuki Hatakenaka3, a)
1)Faculty of Integrated Arts and Sciences, Hiroshima University.
2)Department of Physics, Asahikawa Medical University.
3)Graduate School of Integrated Arts and Sciences, Hiroshima University.

(Dated: 24 June 2018)

The physical basis of an artificial neuron is studied using a model that is based on the stochastic transition
between two states in a double well potential. It is shown that the stochastic transition model generates an
energy-defined sigmoid function acting as an activation (or transfer) function in neurons. The model is also
applied to circuit neurons using superconducting quantum interference devices (SQUIDs) in artificial neural
networks.

PACS numbers: 87.19.ll, 85.25.Dq, 07.05.Mh

I. INTRODUCTION

Artificial Intelligence (AI) is a rapidly growing indis-
pensable technology that is driving both the scientific
evolution and industrial progress in contemporary soci-
ety inherent in complexity and uncertainty. The funda-
mental technology supporting AI is the Artificial Neu-
ral Network (ANN)1 which is a biological nerve-inspired
system. It is not programmed in the traditional way, but
trained using historical data that represent the behaviour
of a target system. This enables us to handle complicated
problems on noisy and incomplete data in various fields
like pattern recognition.

ANN is considerably simplified despite its complexity
in the actual nervous system. It comprises many neuron
elements arranged in the layered structure, which are in-
terconnected to one another via synapse elements. There
are different types of ANN that depends on the intended
tasks. It is classified into feed-forward neural network
and feed-back (or recurrent) neural network that consid-
ers the connectivity of the neurons in a network. The
feed-forward ANN was the first and most simple type of
artificial neural network devised. In this network, infor-
mation flows in only one direction along the connecting
pathways from the input layer via the hidden layers to
the output layer as shown in Fig. 1. There is also no
feedback loop in this network contrary to the recurrent
network.

The artificial neuron is composed of synapses and a
soma as shown in Fig. 2. It receives one or more individ-
ually weighted inputs that are produced at the synapses
and sums them at a soma. An output is generated ac-
cording to the activation function representing the neu-
ron’s nonlinear action potential. The activation func-
tions are therefore the heart of the neuron. Among the
various nonlinear functions, sigmoid function is the most
suitable mathematical tool for learning algorithm based
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FIG. 1. A three-layered feed-forward neural network.
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FIG. 2. Schematic diagram of an artificial neuron.

on the back-propagation scheme2. It is represented as

f(x) =
1

1 + e−x
. (1)

This simplified model makes it possible to realize a
scalable artificial neural network by VLSI technology
based on the latest nanotechnology. In fact, ANN can be
realized in various systems3,4. Among solid-state devices,
a superconducting circuit is also a promising candidate
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because of its ultra-high speed operation and ultra-low
power consumption even though it is forced to operate
at low temperatures. In particular, it is suitable for real-
izing threshold logic circuits using nonlinearity inherent
in Josephson elements. In fact, ANN using Josephson el-
ements has been proposed5,6 in the early 90s, there have
been successful implementations using different ways.7–11

In the previous studies, different types of activation
functions in artificial neurons are employed to construct
the superconducting artificial neural networks. For ex-
ample, the two-stage coupled SQUID with a cascade
connection produced a step-like function9 and the rapid
single flux quantum (RSFQ) comparator based on the
statistical transition provided the error function similar
to sigmoid function10. Interestingly, Yamanashi et. al.,
found the pseudo sigmoid function even in the RSFQ
comparator11. However, there has been no existing sys-
tem that can exactly generate sigmoid function for error
back propagation learning algorithm. In addition, the
theoretical basis of artificial neurons with sigmoid func-
tion has not been fully discussed.12

Hence in this paper, we present the physical basis of
the sigmoid function acting as an activation function in
neurons which are the building blocks of ANNs based
on a typical two-state stochastic transition model. The
model will then be used to analyze simplified SQUID-
based artificial neurons.

II. PHYSICAL BASIS OF ARTIFICIAL NEURONS

Here we discuss the physical basis of sigmoid function
generation. Let us consider the transition between two
states as a nonlinear physical phenomenon that results to
a binary function as shown in Fig. 3. The rate equation
of this system is given as13

dpL
dt

= −ΓLRpL + ΓRLpR (2)

dpR
dt

= −ΓRLpR + ΓLRpL (3)

where the probability of finding a particle in the left
(right) well is denoted by pL(R). Γij stands for the tran-
sition rate from the i state to the j state. Since the
conservation law for probability (pL + pR = 1) based on
d(pL + pR)/dt = 0, then these coupled equations are re-
duced to

dpL
dt

= −(ΓLR + ΓRL)pL + ΓRL. (4)

This can be analytically solved under the initial condition
pL(0) = 1,

pL =

(
1− ΓRL

ΓLR + ΓRL

)
e−(ΓLR+ΓRL)t +

ΓRL

ΓLR + ΓRL
.

(5)

Here, the relaxation time τ is defined as

τ =
1

ΓLR + ΓRL
(6)

which is a measure to estimate the time required to reach
the equilibrium state any moment later. In equilibrium,
Equation (5) is reduced to

pL =
ΓRL

ΓLR + ΓRL
=

1

1 + ΓLR/ΓRL
. (7)

This is a fundamental formula based on stochastic tran-
sition model.
Here we employ the Arrhenius transition formula jus-

tified by the transition state theory14,15 for the transition
rate given as

Γ =
ω0

2π
e
− ∆U

kBT (8)

where ∆U represents the barrier height as exemplified by
∆EL(R) in Fig. 3. ω0 is the angular frequency inside the
metastable minimum while kB and T are the Boltzmann
constant and temperature, respectively. This yields the
sigmoid function expressed by

pL =
1

1 + e
− ∆E

kBT

(9)

where ∆E is the energy difference between two states.
This expression is no other than the basic formula for a
neuron response in the Boltzmann machine16 which is a
type of stochastic recurrent neural network.
Here we note that the Boltzmann distribution imposed

in the beginning of the Boltzmann machine is not as-
sumed in the derivation of the basic equation (7). The ob-
tained scheme is totally different from the Boltzmann ma-
chine. This allows us to extend neurons to the quantum-
mechanical domain. In semiclassical regime, the tran-
sition rate by quantum tunneling17 is roughly given by
replacing kBT with ℏω in Eq. (8). In this way, the
above generation scheme is made available for any sys-
tem with stochastic transition processes. Therefore, this
will serve as a guideline for designing sigmoid functions
in any physical system.
Note that the obtained sigmoid function is a function

of energy difference which is system dependent. This is
good for energy defined neurons like in the Boltzmann
machine. However, energy is generally not a suitable in-
put variable. Therefore, it is necessary to confirm that
this energy difference is proportional to the input vari-
able when the sigmoid function is generated by using this
transition scheme.

III. SQUID-BASED ARTIFICIAL NEURONS

Now let us apply the above transition scheme in gener-
ating the sigmoid function to artificial neurons based on
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FIG. 3. Schematic diagram of double well potential.

superconducting devices. As an artificial neuron, we con-
sider the system known as an rf SQUID, which consists
of a superconducting loop with the inductance L inter-
rupted by a Josephson junction (JJ) as shown in Fig. 4
(a). The double SQUID-based ANN architecture has al-
ready been discussed by Chiarello et. al.18 . The SQUID
neuron responds in nonlinear way to the sum of the input
magnetic fluxes applied to its loop. The SQUID state as
an output is detected by the dc-SQUID arranged nearby.
Unfortunately, there are no presented discussions on sig-
moid function in their paper.

The potential energy of rf SQUID is given by

U(Φ̂) = EL(Φ̂− Φ̂ex)
2 + EJ [1− cos(2πΦ̂)] (10)

where Φ̂ and Φ̂ex are the magnetic flux through the su-
perconducting ring and an externally applied magnetic
flux respectively. These are normalized by the quantum
unit of magnetic flux Φ0 = h/2e where h is the Plank
constant and e is an elementary electric charge. The
first term represents the magnetic energy accumulated
in the ring with EL = Φ2

0/2L. On the other hand, the
second term is the Josephson coupling energy given by
EJ = ℏIc/2e with Ic being the Josephson critical current.
Figure 4 (b) shows the potential profile as a function of

Φ̂ with different applied magnetic flux values Φ̂ex. The
lowest two minima form a double well potential required
to generate the sigmoid function discussed in the previous
section.

Before we proceed in the discussion of the linearity of
input signals in this system, we shall first consider the
equilibrium state of the system which is an important
assumption in a two-state transition state scheme. As
discussed in the previous section, the time to reach the
equilibrium state can be roughly estimated by the re-
laxation time τ . The assumption is not satisfied if the
transition rate is small which is equivalent to a long re-
laxation time. The upper limit of the transition rate is
given in the case of bias Φ̂ex = 0.5 where the potential
barrier is highest, roughly 2EJ and is expressed as

τ ∼ 2π

ω0
e

2EJ
kBT . (11)

0-1 1
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U(      )/EL"Φ

"Φ

FIG. 4. (a) An rf SQUID and (b) its potential profile with

Φ̂ex = 0 (solid line) and Φ̂ex = 0.5 (dotted line).

The attempt frequency ω0 of the prefactor is given as

ω0 =

√
d2U/dΦ̂2

m
≃ 1

ℏ

√
8EJEc

(
1 +

1

πβL

)
(12)

where m is the mass of the particle in the potential ex-
pressed as Φ2

0C in the case of SQUID. Ec is the charg-
ing energy defined as e2/2C with C being the junction
capacitance. βL is the dimensionless inductance param-
eter equivalent to 2πEJ/EL. This reduces to Josephson
plasma frequency when EL = 0 or equivalently βL = ∞.
Now let us estimate the relaxation time using the

typical junction parameters. At the fixed temperature
(T = 4.2K), there are three junction parameters namely,
EJ , Ec and EL. In the case of classical Josephson junc-
tion, C is less than 10−12F. On the other hand, EL and
EJ are restricted by the condition in the formation of a
double well potential 2 < βL. Figure 5 shows the relax-
ation time as a function of the Josephson critical current
in the case of βL = 2π as an example.
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FIG. 5. The relaxation time τ as a function of the Josephson
critical current Ic at T = 4.2K, C = 1×10−14F, and βL = 2π.
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Under these junction parameters, the relaxation time
is measured in sub-micro seconds. This indicates that
there are junction parameters satisfying the equilibrium
condition. The relaxation time is extremely sensitive to
the Josephson critical current, so careful handling of the
junction parameters is necessary in the neuron design.
In other words, the time to reach the equilibrium state
becomes extremely large by only a few magnitudes than
the Josephson critical current (τ ∼ 1014 sec for Ic ∼
5µA).
Next, we show that the energy difference between two

minima is proportional to the external magnetic flux.
The energy difference is given as

∆E(Φ̂ex)= E(Φ̂L)− E(Φ̂R)

= EL[(Φ̂R + Φ̂L)− 2Φ̂ex]

+ 2EJ sin(π(Φ̂R+Φ̂L)) sin(π(Φ̂R−Φ̂L))
(13)

where Φ̂L(R) is the magnetic flux giving the local mini-
mum on the left (right) side of the double well potential
and is given as solutions to the following equation deter-
mined from dE/dΦ̂ = 0,

sin (2πΦ̂) = − 2

βL
(Φ̂− Φ̂ex). (14)

Unfortunately, Φ̂L(R) could hardly be solved analytically
which called us to do neumerical methods. The numerical
solutions of Φ̂L(R) for βL = 2π are shown in Fig. 5 (a).

In this figure both Φ̂L and Φ̂R can be well described as
proportional to the external magnetic flux. In the case
of βL = 2π, these are fitted as

Φ̂L = 0.04868Φ̂ex − 0.00014 (15)

Φ̂R = 0.04868Φ̂ex + 0.9512. (16)

Suprisingly, it turns out that both have the same slope.
Within the range of the third order of external mag-

netic flux O(Φ̂3
ex), the slope can be approximated as fol-

lows;

∆Φ̂L(R)

∆Φ̂ex

≃ 1

1 + πβL
. (17)

This approximated slope expression yields 0.0482 which
is in a good agreement with the numerical value.

Moreover, we obtained the expression for ∆E/EL in
the linear form as

∆E(Φ̂ex)/EL = aΦ̂ex + b (18)

where

a =
2πβL

1 + πβL
[2(Φ̂R0 − Φ̂L0)− 1] (19)

b = πβL(1− 2Φ̂R0)

− (1− πβL)(Φ̂R0 + Φ̂L0)(Φ̂R0 − Φ̂L0) (20)
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FIG. 6. Numerical Results (a) Φ̂L(R), (b) ∆E(Φ̂ex)/EL, and

(c) pL at EL/kBT = 10 as a function of Φ̂ex.

with Φ̂L(R)0 being the magnetic flux in an unbiased case.
Note that the slope, a, can be controlled by changing βL

using the tunable Josephson junction19–21.

The fitting line of the numerical results on ∆Enum/EL
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is given by the relation,

∆Enum/EL = 1.716Φ̂ex − 0.858. (21)

The approximate expression yielded the values a = 1.856
and b = −0.858. In spite of the poor approximation of
the third order, the approximate expression is reasonably
consistent with the numerical results. The calculations
presented above clearly proves that the energy difference
of the SQUID is linear to the external magnetic flux in
practice. Therefore, flux-biased SQUIDs can be regarded
as a highly operational sigmoid function using external
magnetic flux as the input variable.

IV. CONCLUDING REMARKS

The stochastic transition between two states in a dou-
ble well potential has been studied to show the physical
basis of artificial neurons with the sigmoid function as
the most suitable mathematical function for back propa-
gation learning algorithm. We found that the transition
probability is exactly described by the sigmoid function
as a function of the energy difference between two states.
It should be noted, however, that in order for the re-
sulting sigmoid function to act as an activation function,
the energy difference must be linear to the input variable
in artificial neural networks. Upon using it to analyze
the SQUID-based artificial neurons, we have derived the
analytical expressions for its sigmoid functions. Finally,
the transition model is applicable for any physical system
with two states.
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