10 research outputs found

    Dynamic Regulation of Myosin Light Chain Phosphorylation by Rho-kinase

    Get PDF
    Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability

    Opportunities for Ferroptosis in Cancer Therapy

    Get PDF
    A critical hallmark of cancer cells is their ability to evade programmed apoptotic cell death. Consequently, resistance to anti-cancer therapeutics is a hurdle often observed in the clinic. Ferroptosis, a non-apoptotic form of cell death distinguished by toxic lipid peroxidation and iron accumulation, has garnered substantial attention as an alternative therapeutic strategy to selectively destroy tumours. Although there is a plethora of research outlining the molecular mechanisms of ferroptosis, these findings are yet to be translated into clinical compounds inducing ferroptosis. In this perspective, we elaborate on how ferroptosis can be leveraged in the clinic. We discuss a therapeutic window for compounds inducing ferroptosis, the subset of tumour types that are most sensitive to ferroptosis, conventional therapeutics that induce ferroptosis, and potential strategies for lowering the threshold for ferroptosis

    Multiparametric High-Content Cell Painting Identifies Copper Ionophores as Selective Modulators of Esophageal Cancer Phenotypes

    Get PDF
    [Image: see text] Esophageal adenocarcinoma is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, the lack of “druggable” driver mutations, and the dominance of large-scale genomic rearrangements. We have previously undertaken a comprehensive small-molecule phenotypic screen using the high-content Cell Painting assay to quantify the morphological response to a total of 19,555 small molecules across a panel of genetically distinct human esophageal cell lines to identify new therapeutic targets and small molecules for the treatment of esophageal adenocarcinoma. In this current study, we report for the first time the dose–response validation studies for the 72 screening hits from the target-annotated LOPAC and Prestwick FDA-approved compound libraries and the full list of 51 validated esophageal adenocarcinoma-selective small molecules (71% validation rate). We then focus on the most potent and selective hit molecules, elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate. Using a multipronged, multitechnology approach, we uncover a unified mechanism of action and a vulnerability in esophageal adenocarcinoma toward copper-dependent cell death that could be targeted in the future

    A thiol‐bound drug reservoir enhances APR‐246‐induced mutant p53 tumor cell death

    No full text
    Abstract The tumor suppressor gene TP53 is the most frequently mutated gene in cancer. The compound APR‐246 (PRIMA‐1Met/Eprenetapopt) is converted to methylene quinuclidinone (MQ) that targets mutant p53 protein and perturbs cellular antioxidant balance. APR‐246 is currently tested in a phase III clinical trial in myelodysplastic syndrome (MDS). By in vitro, ex vivo, and in vivo models, we show that combined treatment with APR‐246 and inhibitors of efflux pump MRP1/ABCC1 results in synergistic tumor cell death, which is more pronounced in TP53 mutant cells. This is associated with altered cellular thiol status and increased intracellular glutathione‐conjugated MQ (GS‐MQ). Due to the reversibility of MQ conjugation, GS‐MQ forms an intracellular drug reservoir that increases availability of MQ for targeting mutant p53. Our study shows that redox homeostasis is a critical determinant of the response to mutant p53‐targeted cancer therapy
    corecore