329 research outputs found

    Recent advances in organic spin-valve devices

    Get PDF
    ManuscriptOrganic Spintronics has been considered to be the physics and applications of spin polarized electron injection, transport, manipulation and detection in organic diodes by the application of an external magnetic field. The prototype device is the organic spin-valve (OSV), which is based on an organic semiconductor spacer placed in between two ferromagnetic electrodes having different coercive fields, of which magnetoresistance changes with the applied field. Immense progress has been achieved in the past few years in fabricating, studying and understanding the underlying physics of these devices. We highlight the most significant advance in OSV research at the University of Utah, including the magnetoresistance response temperature and bias voltage dependencies; and show significant room-temperature operation using LSMO/C60/Co structure. We also report positive OSV-related magnetoresistance at low temperature, which was achieved using LSMO/polymer/Co OSV structure, where the polymer is a poly[phenylene-vinylene] derivative

    Data query mechanism based on hash computing power of blockchain in internet of things

    Get PDF
    Funding: This work is supported by the NSFC (61772280, 61772454, 61811530332, 61811540410), the PAPD fund from NUIST. This work was funded by the Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia. Jin Wang and Osama Alfarraj are the corresponding authors. Acknowledgments: We thank Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia for funding this paper. Author Contributions: Y.R., F.Z. and O.A. conceived the mechanism design and wrote the paper, P.K.S. built the models. T.W. and A.T. developed the mechanism, J.W. and O.A. revised the manuscript. All authors have read and agreed to the published version of the manuscript.Peer reviewedPublisher PD

    Magnetic fringe-field control of electronic transport in an organic film

    Get PDF
    Random, spatially uncorrelated nuclear-hyperfine fields in organic materials dramatically affect electronic transport properties such as electrical conductivity, photoconductivity, and electroluminescence. The influence of these nuclear-hyperfine fields can be overwhelmed by a uniform externally applied magnetic field, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. As a result, even in applied magnetic fields as small as 10 mT, the kinetics of exciton formation, bipolaron formation, and single-carrier hopping are all modified at room temperature, leading to changes in transport properties in excess of 10% in many materials. Here, we demonstrate a new method of controlling the electrical conductivity of an organic film at room temperature, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. (The fringe field is the magnetic field emanating from a ferromagnet, associated with magnetic dipole interactions or, equivalently, the divergence of the magnetization within and at the surfaces of the ferromagnet.) The ferromagnet's fringe fields might act as a substitute for either the applied magnetic field or the inhomogeneous hyperfine field. The size of the effect, the magnetic-field dependence, and hysteretic properties rule out a model where the fringe fields from the ferromagnet provide a local magnetic field that changes the electronic transport properties through the hyperfine field, and show that our effects originate from electrical transport through the inhomogeneous fringe fields coming from the ferromagnet. Surprisingly, these inhomogeneous fringe fields vary over length scales roughly 2 orders of magnitude larger than the hopping length in the organic materials, challenging the fundamental models of magnetoresistance in organic layers which require the correlation length of the inhomogeneous field to correspond roughly to the hopping length

    Relationship between metabolic syndrome and its components and cardiovascular disease in middle-aged and elderly Chinese population:a national cross-sectional survey

    Get PDF
    OBJECTIVES: To assess the relationship between metabolic syndrome (MetS) and its components and cardiovascular disease (CVD) according to different criteria of MetS, as well as whether the estimated association between MetS and CVD was affected by different definitions of MetS among the Chinese population. DESIGN: Population-based, cross-sectional study. SETTING: Data were from a large-scale national stroke screening survey, China National Stroke Screening and Prevention Project. PARTICIPANTS: A nationally representative sample of 109 551 Chinese adults aged ≥40 years in 2014-2015 were included. PRIMARY OUTCOME MEASURES: CVD conditions (stroke, coronary heart disease (CHD) and atrial fibrillation (AF)) diagnosed by clinicians were self-reported. RESULTS: ORs after adjusting for CHD, stroke, AF and CVD in those with MetS using the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion were 1.56 (95% CI 1.48 to 1.63), 1.23 (95% CI 1.17 to 1.30), 1.14 (95% CI 1.08 to 1.21) and 1.40 (95% CI 1.35 to 1.45); 1.51 (95% CI 1.44 to 1.58), 1.20 (95% CI 1.14 to 1.26), 1.09 (95% CI 1.04 to 1.15) and 1.34 (95% CI 1.29 to 1.38) with the American Heart Association/National Heart, Lung, and Blood Institute criterion; and 1.41 (95% CI 1.35 to 1.48), 1.24 (95% CI 1.19 to 1.30), 1.12 (95% CI 1.06 to 1.18) and 1.31 (95% CI 1.27 to 1.35) with the International Diabetes Federation criterion, respectively. Elevated blood pressures were all highly related to the prevalence of stroke and AF, and reduced high-density lipoprotein-cholesterol was associated with a higher OR for CHD than other individual components of MetS. CONCLUSIONS: MetS is significantly associated with CVD, and the prevalence of CVD was more evident when MetS was defined according to the NCEP ATP III criterion. Developing effective public health strategies for the prevention, detection and treatment of MetS should be an urgent priority to reduce the burden of CVD in China

    Research on the Multiroute Probit-Based Public Transit Assignment Model Based on Bus Stop

    Get PDF
    A public transit network differs from a general road network. The passenger flow of bus stops and the limited capacity of buses have a greater effect than road traffic flow on the running time of buses. As a result, conventional public transit assignment models that adopt the econometric road network path concept have numerous limitations. Based on the analysis, the generalized bus trip time chain is analyzed, and the concept of a congestion function is proposed to describe the relationship between trip resistance and flow in the current paper. On the premise of this study, the transit network resistance function is formed and the multiroute probit-based loading model is established. With using STOCH or Dial's algorithm, the process of distribution is proposed. Finally, the model is applied to the transit network assignment of Deqing Town in Zhejiang Province. The result indicates that the model can be applied to practical operations with high-precision results

    Association between exposure to noise and risk of hypertension: A meta-analysis of observational epidemiological studies

    Get PDF
    Background and Objective: An increasing amount of original studies suggested that exposure to noise could be associated with the risk of hypertension, but the results remain inconsistent and inconclusive. We aimed to synthesize available epidemiological evidence about the relationship between various types of noise and hypertension, and to explore the potential dose-response relationship between them in an up-to-date meta-analysis. Methods: We conducted a literature search of PubMed and Embase from these databases’ inception through December 2016 to identify observational epidemiological studies examining the association between noise and risk of hypertension. A Random-effects model was used to combine the results of included studies. Dose-response meta-analysis was conducted to examine the potential dose-response relationship. Results: Thirty-two studies (five cohort studies, one case-control study, and twenty-six cross-section Studies) involving 264,678 participants were eligible for inclusion. Pooled result showed that living or working in environment with noise exposure was significantly associated with increase risk of hypertension (OR 1.62; 95% CI: 1.40 to 1.88). We found no evidence of a curve linear association between noise and risk of hypertension. Dose-response analysis suggested that, for an increment of per 10 dB(A) of noise, the combined odds ratio of hypertension was 1.06 (95% CI: 1.04 to 1.08). Conclusions: Integrated epidemiological evidence supports the hypothesis that exposure to noise may be a risk factor of hypertension, and there is a positive dose-response association between them

    Organic magnetoelectroluminescence for room temperature transduction between magnetic and optical information

    Get PDF
    Magnetic and spin-based technologies for data storage and processing provide unique challenges for information transduction to light because of magnetic metals' optical loss, and the inefficiency and resistivity of semiconductor spin-based emitters at room temperature. Transduction between magnetic and optical information in typical organic semiconductors poses additional challenges, as the spin-orbit interaction is weak and spin injection from magnetic electrodes has been limited to low temperature and low polarization efficiency. Here we demonstrate room temperature information transduction between a magnet and an organic light-emitting diode that does not require electrical current, based on control via the magnet's remanent field of the exciton recombination process in the organic semiconductor. This demonstration is explained quantitatively within a theory of spin-dependent exciton recombination in the organic semiconductor, driven primarily by gradients in the remanent fringe fields of a few nanometre-thick magnetic film

    Including fringe fields from a nearby ferromagnet in a percolation theory of organic magnetoresistance

    Get PDF
    Random hyperfine fields are essential to mechanisms of low-field magnetoresistance in organic semiconductors. Recent experiments have shown that another type of random field fringe fields due to a nearby ferromagnet can also dramatically affect the magnetoresistance. A theoretical analysis of the effect of these fringe fields is challenging, as the fringe field magnitudes and their correlation lengths are orders of magnitude larger than that of the hyperfine couplings. We extend a recent theory of organic magnetoresistance to calculate the magnetoresistance with both hyperfine and fringe fields present. This theory describes several key features of the experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the effect
    corecore