523 research outputs found

    Measurement of Antenna Surfaces from In- and Out-Of-Focus Beam Maps using Astronomical Sources

    Get PDF
    We present a technique for the accurate estimation of large-scale errors in an antenna surface using astronomical sources and detectors. The technique requires several out-of-focus images of a compact source and the signal-to-noise ratio needs to be good but not unreasonably high. For a given pattern of surface errors, the expected form of such images can be calculated directly. We show that it is possible to solve the inverse problem of finding the surface errors from the images in a stable manner using standard numerical techniques. To do this we describe the surface error as a linear combination of a suitable set of basis functions (we use Zernike polynomials). We present simulations illustrating the technique and in particular we investigate the effects of receiver noise and pointing errors. Measurements of the 15-m James Clerk Maxwell telescope made using this technique are presented as an example. The key result is that good measurements of errors on large spatial scales can be obtained if the input images have a signal-to-noise ratio of order 100 or more. The important advantage of this technique over transmitter-based holography is that it allows measurements at arbitrary elevation angles, so allowing one to characterise the large scale deformations in an antenna as a function of elevation.Comment: 6 pages, 5 figures (accepted by Astronomy & Astrophysics

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.

    Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions

    Get PDF
    We present a theory to investigate electro-kinetic behavior, namely, electrorotation and dielectrophoresis under alternating current (AC) applied fields for a pair of touching inhomogeneous colloidal particles and biological cells. These inhomogeneous particles are treated as graded ones with physically motivated model dielectric and conductivity profiles. The mutual polarization interaction between the particles yields a change in their respective dipole moments, and hence in the AC electrokinetic spectra. The multipolar interactions between polarized particles are accurately captured by the multiple images method. In the point-dipole limit, our theory reproduces the known results. We find that the multipolar interactions as well as the spatial fluctuations inside the particles can affect the AC electrokinetic spectra significantly.Comment: Revised version with minor changes: References added and discussion extende

    Predicted FeII Emission-Line Strengths from Active Galactic Nuclei

    Full text link
    We present theoretical FeII emission line strengths for physical conditions typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line strengths were computed with a precise treatment of radiative transfer using extensive and accurate atomic data from the Iron Project. Excitation mechanisms for the FeII emission included continuum fluorescence, collisional excitation, self-fluorescence amoung the FeII transitions, and fluorescent excitation by Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine structure levels (including states to E ~ 15 eV) was used to predict fluxes for approximately 23,000 FeII transitions, covering most of the UV, optical, and IR wavelengths of astrophysical interest. Spectral synthesis for wavelengths from 1600 Angstroms to 1.2 microns is presented. Applications of present theoretical templates to the analysis of observations are described. In particular, we discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1 micron region which are predicted by the Lyman-alpha fluorescence mechanism. We also compare our UV spectral synthesis with an empirical iron template for the prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template presented in this work should also applicable to a variety of objects with FeII spectra formed under similar excitation conditions, such as supernovae and symbiotic stars.Comment: 33 pages, 15 postscript figure

    Particle entrapment as a feedback effect

    Full text link
    We consider a suspension of polarizable particles under the action of traveling wave dielectrophoresis (DEP) and focus on particle induced effects. In a situation where the particles are driven by the DEP force, but no external forces are exerted on the fluid, the joint motion of the particles can induce a steady fluid flow, which leads to particle entrapment. This feedback effect is proven to be non-negligible even for small volume concentration of particles.Comment: 4 pages, 4 figures, submitte

    Anisotropic Magnetoresistance in Manganites: Model and Experiment

    Full text link
    We present measurements of anisotropic magnetoresistance of La_{0.75}Sr_{0.25}MnO_3 films deposited on (001) SrTiO_3 substrates, and develop a model to describe the low temperature AMR in manganites. We measure an AMR of the order of 10^{-3} for the current I parallel to the [100] axis of the crystal and vanishing AMR for I//[110], in agreement with the model predictions.Comment: 4 pages, 4 figure

    Comments on alternative calculations of the broadening of spectral lines of neutral sodium by H-atom collisions

    Get PDF
    With the exception of the sodium D-lines recent calculations of line broadening cross-sections for several multiplets of sodium by Leininger et al (2000) are in substantial disagreement with cross-sections interpolated from the tables of Anstee and O'Mara (1995) and Barklem and O'Mara (1997). The discrepancy is as large as a factor of three for the 3p-4d multiplet. The two theories are tested by using the results of each to synthesize lines in the solar spectrum. It is found that generally the data from the theory of Anstee, Barklem and O'Mara produce the best match to the observed solar spectrum. It is found, using a simple model for reflection of the optical electron by the potential barrier between the two atoms, that the reflection coefficient is too large for avoided crossings with the upper states of subordinate lines to contribute to line broadening, supporting the neglect of avoided ionic crossings by Anstee, Barklem and O'Mara for these lines. The large discrepancies between the two sets of calculations is a result of an approximate treatment of avoided ionic crossings for these lines by Leininger et al (2000).Comment: 18 pages, 5 ps figures included, to appear in J Phys B: At. Mol. Opt. Phy
    • …
    corecore