15 research outputs found

    Structural Reliability Based Dynamic Positioning of Turret-Moored FPSOs in Extreme Seas

    Get PDF
    FPSO is widely used during the deep-sea oil and gas exploration operations, for which it is an effective way to keep their position by means of positioning mooring (PM) technology to ensure the long-term reliability of operations, even in extreme seas. Here, a kind of dynamic positioning (DP) controller in terms of structural reliability is presented for the single-point turret-moored FPSOs. Firstly, the mathematical model of the moored FPSO in terms of kinematics and dynamics is established. Secondly, the catenary method is applied to analyze the mooring line dynamics, and mathematical model of one single mooring line is set up based on the catenary equation. Thereafter, mathematical model for the whole turret mooring system is established. Thirdly, a structural reliability index is defined to evaluate the breaking strength of each mooring line. At the same time, control constraints are also considered to design a state feedback controller using the backstepping technique. Finally, a series of simulation tests are carried out for a certain turret-moored FPSO with eight mooring lines. It is shown in the simulation results that the moored FPSO can keep its position well in extreme seas. Besides, the FPSO mooring line tension is reduced effectively to ensure mooring lines safety to a large extent in harsh sea environment

    Stabilization of an Underactuated Surface Vessel Based on Adaptive Sliding Mode and Backstepping Control

    Get PDF
    The paper studied controlling problem of an underactuated surface vessel with unknown interferences. It proved that the control problem of underactuated surface vessel can be transformed into the stabilization analysis of two small subsystems. This controller was designed by backstepping method and adaptive sliding mode, was suitable for solving the problem of the control of higher systems, can keep the system global asymptotic stability, and can inhibit unknown interference, and boundary layer can weaken the buffeting generated by sliding mode. The unknown interference was estimated by adaptive function. Finally, the simulation results are given to demonstrate the effectiveness of the proposed control laws

    Adaptive Fixed-Time Trajectory Tracking Control for Underactuated Hovercraft with Prescribed Performance in the Presence of Model Uncertainties

    No full text
    This paper develops an adaptive fixed-time trajectory tracking controller of an underactuated hovercraft with a prescribed performance in the presence of model uncertainties and unknown time-varying environment disturbances. It is the first time that the proposed method is applied to the motion control of the hovercraft. To begin with, based on the hovercraft's four degrees of freedom (DOF) model, the virtual control laws are designed using an error transforming function and the fixed-time stability theory to guarantee that the position tracking errors are constrained within the prescribed convergence rates and minimum overshoot. In addition, by combining the Lyapunov direct method and the adaptive radial basis function neural network (ARBFNN), the actual control laws are designed to ensure that the velocity tracking errors converge to a small region containing zero while handling model uncertainties and external disturbances effectively. Finally, all tracking errors of the closed-loop system are uniformly ultimately bounded and fixed-time convergent. Results from a comparative simulation study verify the effectiveness and advantage of the proposed method

    Adaptive Synchronization Control of Multiple Vessels with Switching Communication Topologies and Time Delay

    No full text
    Recently, synchronization movement control of multiple vessels has been studied broadly. In most of the studies, the communication network among vessels is considered to be fixed and the time delay is often ignored. However, the communication network among vessels maybe vary because of switching of different tasks, and the time delay is necessary to be considered when the communication network is unreliable. In this paper, the synchronization movement of multiple vessels with switching connected communication topologies is studied, and an adaptive synchronization control algorithm that is based on backstepping sliding mode control is proposed. The control algorithm is achieved by defining cross coupling error which is combination of the trajectory tracking error and velocity tracking error. And an adaptive control term is used to estimate the external disturbances, so that the unknown external disturbances can be compensated. Furthermore, the robustness of the control law to time-varying time delay is also discussed. At last, some simulations are carried out to validate the effectiveness of the proposed synchronization control algorithm

    Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    No full text
    Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP) system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI). Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents

    Monocular VO Based on Deep Siamese Convolutional Neural Network

    No full text
    Deep learning-based visual odometry systems have shown promising performance compared with geometric-based visual odometry systems. In this paper, we propose a new framework of deep neural network, named Deep Siamese convolutional neural network (DSCNN), and design a DL-based monocular VO relying on DSCNN. The proposed DSCNN-VO not only considers positive order information of image sequence but also focuses on the reverse order information. It employs supervised data-driven training without relying on any modules in traditional visual odometry algorithm to make the DSCNN to learn the geometry information between consecutive images and estimate a six-DoF pose and recover trajectory using a monocular camera. After the DSCNN is trained, the output of DSCNN-VO is a relative pose. Then, trajectory is recovered by translating the relative pose to the absolute pose. Finally, compared with other DL-based VO systems, we demonstrate the proposed DSCNN-VO achieve a more accurate performance in terms of pose estimation and trajectory recovering through experiments. Meanwhile, we discuss the loss function of DSCNN and find a best scale factor to balance the translation error and rotation error

    Early Low-Fluence Red Light or Darkness Modulates the Shoot Regeneration Capacity of Excised Arabidopsis Roots

    No full text
    In plants, light is an important environmental signal that induces meristem development and interacts with endogenous signals, including hormones. We found that treatment with 24 h of low-fluence red light (24 h R) or 24 h of darkness (24 h D) following root excision greatly increased the frequency of shoot generation, while continuous low-fluence red light in callus and shoot induction stages blocked the explants’ ability to generate shoots. Shoot generation ability was closely associated with WUS expression and distribution pattern. 1-N-naphthylphtalamic acid (NPA) disrupted the dynamic distribution of the WUS signal induced by early 24 h R treatment, and NPA plus 24 R treatment increased the average shoot number compared with early 24 h R alone. Transcriptome analysis revealed that differentially expressed genes involved in meristem development and hormone signal pathways were significantly enriched during 24 R or 24 D induced shoot regeneration, where early 24 h R or 24 h D treatment upregulated expression of WOX5, LBD16, LBD18 and PLT3 to promote callus initiation and formation of root primordia, and also activated WUS, STM, CUC1 and CUC2 expression, leading to initiation of the shoot apical meristem (SAM). This finding demonstrates that early exposure of explants to transient low-fluence red light or darkness modulates the expression of marker genes related with callus development and shoot regeneration, and dynamic distribution of WUS, leading to an increased ability to generate shoots

    Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic Voronoi substructures

    No full text
    For multifunctional optimization design of honeycomb structures, the high stiffness hierarchical honeycombs with stochastic Voronoi substructures (HHSVS) are proposed by substituting cell walls of the regular hexagonal honeycombs (ORHH) with Voronoi honeycomb lattices of equal mass. In this study, the tunable linear elastic fracture properties of the HHSVS are investigated by finite element analysis. Results demonstrate that size effect on fracture toughness of the HHSVS is noticeable and a brittleness number is suggested to determine it. At the same time, compared with the ORHH and conventional Voronoi honeycombs of equal mass/density, the in-plane fracture toughness of the HHSVS could be more than 2 times larger and regardless of the cell regularity and hierarchical parameters, fracture toughness of the HHSVS exhibits a weaker quadratic dependence on the relative density and is the highest. As a whole, the HHSVS exhibit the combined properties of tunable Poisson’s ratio, higher stiffness, enhanced tunable fracture toughness, lower imperfection sensitivity and better structural-acoustic performance etc. The research provides a novel strategy for the multifunctional optimization design of the honeycombs structures widely used in the engineering fields. Keywords: Hierarchical honeycombs with stochastic Voronoi substructures (HHSVS), Tunable fracture toughness, Size effect, T-stres

    Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system.

    Get PDF
    To find an electrical conductivity (EC) in the nutrient solution used for pakchoi (Brassica campestris L. ssp. Chinensis) cultivation that optimizes the plant's physiology, growth, and quality, we conducted an experiment with eight EC treatments (from EC0 to EC9.6) in a hydroponic production system (i.e. soilless culture) under greenhouse condition in Shanghai, China. Plants biomass production, leaf photosynthesis, vegetable quality variables, tissue nitrate and nitrite contents, and antioxidant enzyme activities were measured. The results showed that very high (EC9.6) or low EC (EC0-0.6) treatments clearly decreased plants fresh weight (FW) and dry weight (DW), leaf size, leaf water content, leaf net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and taste score. Nitrite content, and antioxidant enzyme activities were low in medium EC treatments (EC1.8 and EC2.4), but high in very high or low EC treatments. Leaf relative chlorophyll, ascorbic acid, and nitrate contents increased gradually from low EC to high EC treatments, while crude fiber and soluble sugar contents decreased. Based on growth and quality criteria, the optimal EC treatment would be EC1.8 or EC2.4 for pakchoi in the hydroponic production system. Too high or too low EC would induce nutrient stress, enhance plant antioxidant enzyme activities, and suppress pakchoi growth and quality

    Mechanical Metamaterials Foams with Tunable Negative Poisson’s Ratio for Enhanced Energy Absorption and Damage Resistance

    No full text
    Systematic and deep understanding of mechanical properties of the negative Poisson’s ratio convex-concave foams plays a very important role for their practical engineering applications. However, in the open literature, only a negative Poisson’s ratio effect of the metamaterials convex-concave foams is simply mentioned. In this paper, through the experimental and finite element methods, effects of geometrical morphology on elastic moduli, energy absorption, and damage properties of the convex-concave foams are systematically studied. Results show that negative Poisson’s ratio, energy absorption, and damage properties of the convex-concave foams could be tuned simultaneously through adjusting the chord height to span ratio of the sine-shaped cell edges. By the rational design of the negative Poisson’s ratio, when compared to the conventional open-cell foams of equal mass, convex-concave foams could have the combined advantages of relative high stiffness and strength, enhanced energy absorption and damage resistance. The research of this paper provides theoretical foundations for optimization design of the mechanical properties of the convex-concave foams and thus could facilitate their practical applications in the engineering fields
    corecore