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FPSO is widely used during the deep-sea oil and gas exploration operations, for which it is an effective way to keep their position
by means of positioning mooring (PM) technology to ensure the long-term reliability of operations, even in extreme seas. Here, a
kind of dynamic positioning (DP) controller in terms of structural reliability is presented for the single-point turret-moored FPSOs.
Firstly, the mathematical model of the moored FPSO in terms of kinematics and dynamics is established. Secondly, the catenary
method is applied to analyze the mooring line dynamics, and mathematical model of one single mooring line is set up based on
the catenary equation. Thereafter, mathematical model for the whole turret mooring system is established. Thirdly, a structural
reliability index is defined to evaluate the breaking strength of each mooring line. At the same time, control constraints are also
considered to design a state feedback controller using the backstepping technique. Finally, a series of simulation tests are carried
out for a certain turret-moored FPSO with eight mooring lines. It is shown in the simulation results that the moored FPSO can
keep its position well in extreme seas. Besides, the FPSO mooring line tension is reduced effectively to ensure mooring lines safety
to a large extent in harsh sea environment.

1. Introduction

Floating production storage and offloading vessels (FPSOs)
are vessels or platforms that float in deep water. The offshore
oil and gas industry uses them to process crude and natural
gas after it is pumped up from deep beneath the ocean floor.
They may also assist in the pumping process itself. Once a
new oilfield is discovered and numerous production wells are
drilled, an FSPO is put in place and the various platforms and
underwater wellheads are connected to it.

With the continued global thirst for oil and natural gas,
deep-sea oil and gas explorations have become imperative
and challengeable. PM systems, also, namely, thruster assisted
position mooring systems, have been proved to be a more
cost-efficient alternative to floating offshore structures such
as FPSOs and semisubmersibles. PM systems combine tra-
ditional mooring system with modern dynamic position
system to acquire both their advantages. In normal sea
conditions, the mooring system constrains the position of
the vessel, while the dynamic positioning controller calculates
out the thruster forces to regulate the heading, only. However,

in harsh seas, thrusters must assist the mooring system
altogether to keep positioning well.

Strand et al. [1] proposed that automatic heading setpoint
control is the most important function for turret-anchored
ships. Nguyen and Sørensen [2] proposed a new concept of
setpoint chasing for moderate and extreme sea conditions.
Nguyen and Sørensen [3] designed a switching control
method for PM systems, which allows the thrusters to assist
the mooring system in varying environmental and vessel
operational conditions. Berntsen et al. [4, 5] developed a
reliability based control algorithm with an intrinsic part of
reliability index. Fang and Blanke [6] introduced a novel
way to determine the reference position to protect mooring
lines and Fang et al. [7] extended the former results by using
the structural reliability index to calculate optimal setpoint.
However, the formerly proposed structural reliability index
by Berntsen et al. [4] is equal to the critical reliability index,
which cannot make sure that all the mooring lines are not
broken down in extreme seas.

Here, a dynamic positioning controller in terms of
structural reliability is presented for moored FPSOs to
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Figure 1: Reference coordinate system.

protect the mooring lines from breakage in extreme seas,
in which the structural reliability index is selected a little
larger than the critical reliability index. First of all, the
kinematics and dynamics mathematical models of FPSOs
are established. Then the mooring system models are also
established. Thereafter, a control algorithm of PM system
based on structural reliability is proposed. Finally, a number
of simulation experiments are carried out for a certain single-
point turret-moored FPSO in extreme seas, concerned more
with the safety of mooring lines.

2. Mathematical Model of Turret-Moored
FPSOs

2.1. FPSOs Kinematics. The north-east-down coordinate sys-
tem is denoted as inertial frame, in which the motions of
vessel are described as shown in Figure 1. (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) is the
position of the center of vessel in north-east-down coordinate
system; (𝜑, 𝜃, 𝜓) represents the attitude angle of vessel in
north-east-down coordinate system; 𝜑 is rotated around the
𝑥-axis named roll; 𝜃 is rotated around the𝑦-axis named pitch;
𝜓 is rotated around the 𝑧-axis named yaw; and 𝑢, V, 𝑤, 𝑝, 𝑞, 𝑟
are the transitional and rotational velocities in body-fixed
coordinate system.

For simplicity, only the three-degree-of-freedommotions
of the vessels in the horizontal plane (surge, sway, and yaw)
are considered for the moored FPSOs. Then, the nonlinear
low-frequency model is established as follows [8]:

𝑀]̇ + 𝐶RB (]) ] + 𝐶𝐴 (]𝑟) ]𝑟 + 𝐷𝐿] + 𝐷NL (]𝑟, 𝛾𝑟) ]𝑟

= 𝜏th + 𝜏𝑤 + 𝜏𝑚,

̇𝜂 = 𝐽 (𝜂) V,

(1)

where𝑀 is the inertia matrix including added mass, 𝐶RB(])
and 𝐶𝐴(]𝑟) are the skew-symmetric Coriolis and centripetal
matrices of the rigid body and added mass, 𝐷𝐿 is a strictly
positive dampingmatrix, caused by linearwave drift damping
and laminar skin friction, and 𝐷NL(]𝑟, 𝛾𝑟) is a nonlinear
damping matrix. 𝜏𝑤 is the environmental load vector; 𝜏th is
a vector of control force provided by the thruster system;
𝜏𝑚 is the mooring force vector; ] is the velocity matrix in
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Figure 2: The arrangement of mooring lines.
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Figure 3: Schematic diagram of a single mooring line.

body-fixed coordinate; 𝜂 is the position matrix of vessel; 𝐽(𝜂)
is a rotation matrix.

2.2. Mooring System Model. Here, the mooring system of an
internal turret-moored FPSO is comprised of eight mooring
lines as an example, and the mooring lines are connected to
the vessel through the turret and fixed to the seabed bymeans
of anchors as shown in Figure 2. Each mooring line is in the
general form of a catenary chain line as shown in Figure 3.
The forces on the mooring lines are analyzed by catenary
theory as follows [9]:

𝑠 − 𝑋 = ℎ√1 +
2𝑇ℎ

𝜔ℎ
−
𝑇ℎ

𝜔
cosh−1 (1 + 𝜔ℎ

𝑇ℎ
) , (2)

where 𝑠 is the length of the mooring line; 𝑋 is the length in
the horizontal projection of the mooring line; ℎ is the water
depth; 𝑇ℎ is the horizontal tension of mooring line acting on
the turret; 𝜔 is the unit weight of mooring line in water.

Assuming the mooring lines of internal turret-moored
FPSO are symmetrically located, the initial length of each line
is 𝑠𝑖, the position of the anchor fixed is (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 8,
and the position of the turret center is (𝑥0, 𝑦0). All start points
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of the lines from the turret are considered to be the same one,
and the following equation can be derived as follows [9]:

𝑋𝑖 =
√(𝑥𝑖 − 𝑥0)

2
+ √(𝑦𝑖 − 𝑦0)

2
,

𝑠𝑖 − 𝑋𝑖 = ℎ√1 +
2𝑇ℎ𝑖

𝜔ℎ
−
𝑇ℎ𝑖

𝜔
cosh−1 (1 + 𝜔ℎ

𝑇ℎ𝑖
) ,

𝜃𝑖 = arctan(
𝑦𝑖 − 𝑦0

𝑥𝑖 − 𝑥0
) ,

𝑖 = 1, . . . , 8,

(3)

where 𝜃𝑖 is the azimuth angle of the 𝑖th mooring line and 𝑇ℎ𝑖
is the horizontal tension of the 𝑖th mooring line acting on the
turret. Thus,

𝑋ℎ𝑖 = 𝑇ℎ𝑖 cos (𝜃𝑖) , 𝑌ℎ𝑖 = 𝑇ℎ𝑖 sin (𝜃𝑖) ,

𝑁ℎ𝑖 = 0, 𝑋all =
8

∑
𝑖=1

𝑋ℎ𝑖,

𝑌all =
8

∑
𝑖=1

𝑌ℎ𝑖, 𝑁all = 0,

(4)

where𝑋all, 𝑌all, and𝑁all denote the sum of all mooring forces
in related coordinate axis.

Finally, the forces calculated in NED coordinate system
are transformed to the body-fixed coordinate system as
follows:

𝜏𝑚 =
[

[

𝑋𝑚
𝑌𝑚
𝑁𝑚

]

]

= 𝐽
𝑇
(𝜓)[

[

𝑋all
𝑌all
𝑁all

]

]

. (5)

3. Dynamic Positioning Controllers
Considering Structural Reliability for
Moored FPSOs

3.1. Structural Reliability Index. The main objective of the
controllers design is to ensure that the FPSOs are well
positioned as well as ensuring that the moored lines are not
overloaded in extreme seas. So it is important to quantify
the load of each mooring line with respect to its expected
endurance. Here, a structural reliability index is introduced
to quantify the probability of mooring line failure, and it is
expressed as [10]

𝛿𝑘 (𝑡) =
𝑇𝑏,𝑘 − 𝑘𝑘,𝜎𝑘 − 𝑇𝑘 (𝑡)

𝜎𝑏,𝑘
, 𝑘 = 1, . . . , 𝑞, (6)

where 𝑇𝑏,𝑘 is the mean breaking strength of mooring line
𝑘; 𝜎𝑘 is the standard deviation of the time varying tension
(including high frequencies); 𝑘𝑘 is a scaling factor; 𝑇𝑘(𝑡) is
the low frequency part of the mooring line tension; 𝜎𝑏,𝑘 is the
standard deviation of the mean breaking strength. A lower
bound is selected for 𝛿𝑘; 𝛿𝑠 defines the critical value of the
reliability index. The condition 𝛿𝑘 < 𝛿𝑠 represents a situation
where the probability of line failure is intolerably high.

Formula (6) describes the reliability criterion for line 𝑘.
The controllers will act based on the most critical reliability
index, so the subscript 𝑗 is used to identify the smallest
reliability index:

𝛿𝑗 (𝑡) = min
𝑘∈{1,...,𝑞}

𝛿𝑘 (𝑡) , (7)

where 𝑞 represents the number of mooring lines.

3.2. Controllers Design Based on Mooring Line Structural
Reliability. Feedback backstepping controllers are proposed
to prevent not only the collision between FPSOs and shuttle
tankers, but also the breakage of mooring lines in extreme
seas.

The following assumptions on the mooring system are
proposed.

Assumption 1. The two constants 𝜀1 and 𝜀2 satisfy

0 < 𝜀1 ≤ 𝑇
󸀠

𝑗
≤ 𝜀2, (8)

for all 𝑡 ∈ R+.

Assumption 2. There is a constant 𝜌 such that

𝑟𝑗 ≥ 𝜌 > 0, (9)

where 𝑟𝑗 denotes the extension ofmooring line 𝑗, and the time
derivative of 𝛿𝑗 is as follows:

̇𝛿𝑗 (𝑡) = −
𝑇̇𝑗 (𝑡)

𝜎𝑏,𝑗
(10)

and since

𝑇̇𝑗 (𝑡) = 𝑇
󸀠

𝑗
̇𝑟𝑗 =

𝑇󸀠
𝑗

𝑟𝑗
(𝑝 − 𝑝𝑗)

𝑇

𝑝̇, (11)

then

̇𝛿𝑗 (𝑡) = −
𝑇󸀠
𝑗

𝜎𝑏,𝑗𝑟𝑗
(𝑝 − 𝑝𝑗)

𝑇

𝐽2 (𝜓)𝑤. (12)

State feedback controllers are proposed that regulate (], 𝜓, 𝛿𝑗)
to (0, 𝜓𝑑, 𝛿𝑑). 𝜓𝑑, 𝛿𝑑 are the desired yaw angle and desired
minimum reliability index. It is quite different from the idea
of Berntsen et al. [4] that the value of 𝛿𝑑 is selected larger
than the critical reliability index to ensure that 𝛿𝑗 > 𝛿𝑠. Here,
𝛿𝑑 > 𝛿𝑠. Thus, even in extreme seas, the mooring lines will
still not be broken down with strong effects from the harsh
wind gust.

The state feedback backstepping controllers have been
developed and the propositions are presented in [11–13].Here,
𝜂 = [𝑃

𝑇, 𝜓]
𝑇
= [𝑥, 𝑦, 𝜓]

𝑇 is the position and heading in
north-east-down coordinate system; ] = [𝑤𝑇, 𝜌]𝑇 = [𝑢, V, 𝜌]𝑇
is the transitional and rotational velocities in body-fixed
coordinate system. 𝜏BSP is the output force and moment of
the state feedback controllers.
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Proposition 3. 𝜆, 𝛾, and 𝜅 are strictly positive constants.Then,
the control law is as follows:

𝜏BSP = 𝑀𝜍 + 𝐷] + 𝑔 (𝜂) − 𝐽
𝑇
(𝜓) 𝑏, (13)

where

𝜍 =
[
[

[

(−𝜆 +
𝛾

𝑟𝑗
(𝛿𝑗 − 𝛿𝑑))

− (𝜆 + 𝜅)

]
]

]

[
𝑤

𝜌
]

+

[
[
[
[
[
[
[
[
[
[
[
[
[

[

(−(
𝑇
󸀠

𝑗
𝛾

𝜎𝑏,𝑗
+
𝛾

𝑟𝑗
(𝛿𝑗 − 𝛿𝑑)) 𝜗

𝑇𝑤 − 𝜅𝛾 (𝜓 − 𝜓𝑑)

+ (𝜆𝛾 +
𝑇󸀠
𝑗

𝜎𝑏,𝑗
) (𝛿𝑗 − 𝛿𝑑) 𝐼2

+ (𝛿𝑗 − 𝛿𝑑) 𝛾𝜌𝑆2)𝜗

− (𝜓 − 𝜓𝑑)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝜗 = 𝐽
𝑇

2

(𝑝 − 𝑝𝑗)

𝑟𝑗
, 𝑆2 = (

0 1

−1 0
)

(14)

renders the solution (], 𝛿𝑗, 𝜓) = (0, 𝛿𝑑, 𝜓𝑑) of (1) and (15) to be
globally exponentially stable (GES).

Proof. Consider the following Lyapunov function candidate:

𝑉1 =
1

2
(𝛿𝑗 − 𝛿𝑑)

2

+
1

2
(𝜓 − 𝜓𝑑)

2
. (15)

Its time derivative is

𝑉̇1 = (𝛿𝑗 − 𝛿𝑑)
̇𝛿𝑗 + (𝜓 − 𝜓𝑑) 𝜓̇

= −
𝑇󸀠
𝑗
(𝑡)

𝜎𝑏𝑟𝑗 (𝑡)
(𝛿𝑗 − 𝛿𝑑) (𝑝 − 𝑝𝑗)

𝑇

𝐽2 (𝜓)𝑤 + (𝜓 − 𝜓𝑑) 𝜌.

(16)

Choosing 𝑤 and 𝜌 as virtual inputs that

𝑤 = 𝛼𝑤
Δ
= 𝑟𝑗 (𝛿𝑗 − 𝛿𝑑) 𝛾𝐽

𝑇

2
(𝜓) (𝑝 − 𝑝𝑗) ,

𝜌 = 𝛼𝜌
Δ
= −𝜅 (𝜓 − 𝜓𝑑)

(17)

exponentially stabilizes (𝛿𝑗, 𝜓) = (𝛿𝑑, 𝜓𝑑), since (17) substi-
tuted into (16) yields

𝑉̇1 ≤ −
𝜀1𝛾

𝜎𝑏
(𝛿𝑗 − 𝛿𝑑)

2

− 𝜅(𝜓 − 𝜓𝑑)
2
. (18)

Defining the change of variables

𝑧 = [
𝑧𝑤
𝑧𝜌
]
Δ
= ] − 𝛼, (19)

where 𝛼 = [𝛼𝑇
𝑤
, 𝛼𝜌]
𝑇, and augmenting Lyapunov function to

obtain

𝑉2 = 𝑉1 +
1

2
𝑧
𝑇
𝑧 (20)

get

𝑉̇2 ≤ −
𝜀1𝛾

𝜎𝑏,𝑗
(𝛿𝑗 − 𝛿𝑑)

2

− 𝜅(𝜓 − 𝜓𝑑)
2
+ 𝑧
𝑇
(𝜃 + 𝑧̇) , (21)

where

𝜃 = [−
𝑇󸀠
𝑗

𝜎𝑏,𝑗𝑟𝑗
(𝛿𝑗 − 𝛿𝑑) 𝐽

𝑇

2
(𝜓) (𝑝 − 𝑝𝑗)] . (22)

The objective of the control law is now to obtain

𝜃 + 𝑧̇ = −𝜆𝑧, (23)

where 𝜆 is a strictly positive constant, in which case

𝑉̇2 ≤ −
𝜀1𝛾

𝜎𝑏,𝑗
(𝛿𝑗 − 𝛿𝑑)

2

− 𝜅(𝜓 − 𝜓𝑑)
2
− 𝜆‖𝑧‖

2

(24)

get from (23) that

𝜃 − 𝛼̇ − 𝑀
−1
(𝐷] + 𝑔 (𝜂) − 𝜏 − 𝐽𝑇 (𝜓) 𝑏) = −𝜆𝑧, (25)

so we obtain

𝜏BSP = −𝑀(𝜆𝑧 + 𝜃 − 𝛼̇) + 𝐷] + 𝑔 (𝜂) − 𝐽𝑇 (𝜓) 𝑏. (26)

Substituting for 𝑧, 𝜃, and 𝛼̇ in (26) yields (13). Thus, ‖(𝛿𝑗 −
𝛿𝑑, 𝜓 − 𝜓𝑑, 𝑧)‖ → 0 exponentially fast. It follows from (17)
that ‖𝛼‖ → 0 exponentially fast and, from (19), that ‖]‖ → 0

exponentially fast.

Considering the economical fuel consumption, the con-
straint function is introduced to the controllers and then the
output of the controllers is as follows:

𝜏 = 𝐸 (𝛿𝑗) 𝜏BSP, (27)

where

𝐸 (𝛿𝑗) =
[
[

[

𝑒 (𝛿𝑗) 0 0

0 𝑒 (𝛿𝑗) 0

0 0 1

]
]

]

(28)

and 𝑒(𝛿𝑗) is a proper second-order polynomial satisfying

𝑒 (𝛿𝑗)

=

{{{{

{{{{

{

0 (𝛿𝑗 ≥ 𝛿max)

𝛿2
𝑗

Δ𝛿2
− 2
𝛿max
Δ𝛿2

𝛿𝑗 +
𝛿
2

max
Δ𝛿2

(𝛿min < 𝛿𝑗 < 𝛿max)

1 (𝛿𝑗 ≤ 𝛿min) ,

(29)

where

Δ𝛿 = 𝛿max − 𝛿min (30)

and 𝛿max and 𝛿min are just the variables to decide the active
region of the controllers. When 𝛿𝑗 > 𝛿max, the thrusters do
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Figure 4: Trajectory tracking and heading of FPSO.
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Figure 5: Minimum reliability index of mooring lines.

not work; when 𝛿min < 𝛿𝑗 < 𝛿max, the thrusters work in a low
load state; when 𝛿𝑗 < 𝛿min, the thrusters work in a high load
state.

4. Simulations

The performance of the designed controllers is validated
through simulations for a certain single-point turret-moored
FPSO in extreme conditions. The basic parameters of the
FPSO and the data of mooring lines are shown in Table 1.

The simulation time is 3000 seconds; 𝜓𝑑 is set to 60∘;
𝛿𝑠 = 3.3, 𝛿max = 9.5, 𝛿min = 6, 𝛿𝑑 = 5; the setting wind
speed is 25m/s and the absolute wind direction is 45∘; the
significant wave height 𝐻𝑠 = 6.3m; the period is 10.1 s; the
current velocity is 2.0m/s; and the current direction is 60∘.

The dynamic positioning simulations of the moored
inertial turret-moored FPSO are carried out based on above
settings and the results are shown in Figures 4, 5, and 6.

From Figure 4, we can see that the maximum position
deviation of FPSO is about 50 meters, and the position is
finally stabilized in the range of 10 meters. The heading
is eventually stabilized at about 60 degrees. It is shown in
Figure 5 that the minimum reliability index of mooring lines
is stabilized as expected in extreme seas, which make sure
the mooring lines are safe. From Figure 6, the 𝑋 and 𝑌
control force are zero before 250 seconds due to the effects
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Figure 6: Thrust forces of the FPSO.

of constraint function, while the control forces are reduced as
the reliability index up to the minimum after 500 seconds.

5. Conclusion

Here, the kinematics and dynamics of the internal turret-
moored FPSO mathematical models were established. Struc-
tural reliability based state feedback backstepping controllers
were proposedwith application to the internal turret-moored
FPSO model. In order to ensure the safety of all the mooring
lines, the structural reliability index is selected a little larger
than the critical reliability index. Finally, a series of simulation
tests were carried out for a certain turret-moored FPSO
with eight mooring lines. The simulations showed that the
designed controllers were effective not only to keep the
moored FPSO in the desired position well, but also to keep
the reliability index of all mooring lines within safe ranges in
extreme seas. However, the way to introduce the structural
reliability index is limited to the designed backstepping
controllers, which cannot be used in other controllers like
PID, PI, and so on. Thus, the comparisons of control results
with different controllers are not available. In the further
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Table 1: The data of the FPSO and mooring lines.

Name Value
Ship length 310.0m
Waterline length 296.0m
Ship width 47.2m
Draft 18.9m
Water depth 500m
Mooring line length 1000m
Elastic modulus 1.868 ∗ 108N
Displacement 240869 t
Metacentric height 6.6m
Waterline coefficient 0.9164
Block coefficient 0.85
Mooring line number 8
Unit weight 1088.6N/m
Breaking strength 3500KN

research, a lot more attention should be paid to more types
of structural reliability based controller designs.
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