410 research outputs found
Turkish glacier inventory and classification from high-resolution satellite data
In view of the rapid and accelerating glacier retreat observed worldwide, the creation of an updated glacier inventory is fundamental to understand the glacier changes. Here we present the Turkish glacier inventory based on recent high-resolution satellite images (Pleiades, Google Earth\u2122 and SPOT images). Outlines are manually digitized in ArcMap software. We identified 51 glaciers covering 12.29 km2: more than 60% of the Turkish glacierized area is located on Mount Ararat where the ice cap and four small outlet glaciers cover 7.37 km2. Turkish glaciation is characterized by small glaciers or glacierets partly debris-covered: only three glaciers (Erin\ue7, Izb\u131rak and Ararat glaciers) are larger than 0.5 km2. To assess the evolution of glaciers, we have focused on Mount Ararat where we digitized outlines for 1990, 1994, 2000 and 2016: in 26 years considered the glacier shows a retreat of 2.99 km2, 12 29% of the initial value, showing a reduction rate dramatically higher than the main glacierized mountain ranges of the world
Spectrophotometric Redshifts. A New Approach to the Reduction of Noisy Spectra and its Application to GRB090423
We have developed a new method, close in philosophy to the photometric
redshift technique, which can be applied to spectral data of very low
signal-to-noise ratio. Using it we intend to measure redshifts while minimising
the dangers posed by the usual extraction techniques. GRB afterglows have
generally very simple optical spectra over which the separate effects of
absorption and reddening in the GRB host, the intergalactic medium, and our own
Galaxy are superimposed. We model all these effects over a series of template
afterglow spectra to produce a set of clean spectra that reproduce what would
reach our telescope. We also model carefully the effects of the
telescope-spectrograph combination and the properties of noise in the data,
which are then applied on the template spectra. The final templates are
compared to the two-dimensional spectral data, and the basic parameters
(redshift, spectral index, Hydrogen absorption column) are estimated using
statistical tools. We show how our method works by applying it to our data of
the NIR afterglow of GRB090423. At z ~ 8.2, this was the most distant object
ever observed. We use the spectrum taken by our team with the Telescopio
Nazionale Galileo to derive the GRB redshift and its intrinsic neutral Hydrogen
column density. Our best fit yields z=8.4^+0.05/-0.03 and N(HI)<5x10^20 cm^-2,
but with a highly non-Gaussian uncertainty including the redshift range z [6.7,
8.5] at the 2-sigma confidence level. Our method will be useful to maximise the
recovered information from low-quality spectra, particularly when the set of
possible spectra is limited or easily parameterisable while at the same time
ensuring an adequate confidence analysis.Comment: 6 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
Preliminary results from antarctic albedo from remote sensing observations
The aim of the study is to analyse the surface albedo of the Ant-arctica and investigate eventual signals of variations in space and time between summer 2000/2001 and 2011/2012 by means of the GLASS albedo product. We followed a step-by-step procedure from micro- to macro-scale. At first, we analysed 95 glaciers around the continent, and we found limited temporal variability. Then, looking at spatial varia-tions, we divided Antarctica based on oceanic basins and by continen-tality. We found spatial signals, since mean albedo values range between 0.79 (Pacific and Atlantic basins) and 0.82 (Indian basin) and between 0.76 (along the shore) and 0.81 (inner continent). An increasing vari-ability was found from the inner continent to the shore, and heteroge-neous patterns among the basins, most likely due to meteorological and environmental conditions (mainly: temperature, precipitation, katabatic winds). Finally, the general patterns observed (considering the specific gla-ciers, the three basins and the three continentality sectors) were verified by the analysis of the whole continent and we did not find a significant change of summer averages over time, as they range between 0.79 and 0.80
The Swift X-ray Telescope Cluster Survey II. X-ray spectral analysis
(Abridged) We present a spectral analysis of a new, flux-limited sample of 72
X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT)
on board the Swift satellite down to a flux limit of ~10-14 erg/s/cm2 (SWXCS,
Tundo et al. 2012). We carry out a detailed X-ray spectral analysis with the
twofold aim of measuring redshifts and characterizing the properties of the
Intra-Cluster Medium (ICM). Optical counterparts and spectroscopic or
photometric redshifts are obtained with a cross-correlation with NED.
Additional photometric redshifts are computed with a dedicated follow-up
program with the TNG and a cross-correlation with the SDSS. We also detect the
iron emission lines in 35% of the sample, and hence obtain a robust measure of
the X-ray redshift zX. We use zX whenever the optical redshift is not
available. Finally, for all the sources with measured redshift,
background-subtracted spectra are fitted with a mekal model. We perform
extensive spectral simulations to derive an empirical formula to account for
fitting bias. The bias-corrected values are then used to investigate the
scaling properties of the X-ray observables. Overall, we are able to
characterize the ICM of 46 sources. The sample is mostly constituted by
clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and
groups with temperatures below 3 keV. The redshift distribution peaks around
z~0.25 and extends up to z~1, with 60% of the sample at 0.1<z<0.4. We derive
the Luminosity-Temperature relation for these 46 sources, finding good
agreement with previous studies. The quality of the SWXCS sample is comparable
to other samples available in the literature and obtained with much larger
X-ray telescopes. Our results have interesting implications for the design of
future X-ray survey telescopes, characterised by good-quality PSF over the
entire field of view and low background.Comment: 27 pages, 15 figures; minor typos corrected. To be published in A&A,
Volume 567, July 2014. Websites of the SWXCS project:
http://www.arcetri.astro.it/SWXCS/ and http://swxcs.ustc.edu.cn
Testing the gamma-ray burst variability/peak luminosity correlation on a Swift homogeneous sample
We test the gamma-ray burst correlation between temporal variability and peak
luminosity of the -ray profile on a homogeneous sample of 36 Swift/BAT
GRBs with firm redshift determination. This is the first time that this
correlation can be tested on a homogeneous data sample. The correlation is
confirmed, as long as the 6 GRBs with low luminosity (<5x10^{50} erg s^{-1} in
the rest-frame 100-1000 keV energy band) are ignored. We confirm that the
considerable scatter of the correlation already known is not due to the
combination of data from different instruments with different energy bands, but
it is intrinsic to the correlation itself. Thanks to the unprecedented
sensitivity of Swift/BAT, the variability/peak luminosity correlation is tested
on low-luminosity GRBs. Our results show that these GRBs are definite outliers.Comment: Accepted for Publication in MNRAS. 10 pages, 5 figures, 3 table
Optical and infrared photometry of the blazar PKS0537-441
We present a large collection of photometric data on the Blazar PKS 0537-441
in the VRIJHK bands taken in 2004-2009. At least three flare-like episodes with
months duration, and >3 mag amplitude are apparent. The spectral energy
distribution is consistent with a power law, and no indication of a thermal
component is found. We searched for short time scale variability, and an
interesting event was identified in the J band, with a duration of ~25 minutes.Comment: 10 pages, 3 figures, in press in ApJ
- …