38 research outputs found

    County-level USA: No Robust Relationship between Geoclimatic Variables and Cognitive Ability

    Get PDF
    Using a sample of ~3,100 U.S. counties, we tested geoclimatic explanations for why cognitive ability varies across geography. These models posit that geoclimatic factors will strongly predict cognitive ability across geography,even when a variety of common controls appear in the regression equations.Our results generally do not support UV radiation (UVR) based or other geoclimatic models. Specifically, although UVR alone predicted cognitive ability at the U.S. county-level (β = -.33), its validity was markedly reduced in the presence of climatic and demographic covariates (β = -.16), and was reduced even further with a spatial lag (β = -.10). For climate models,average temperature remained a significant predictor in the regression equation containing a spatial lag (β = .35). However, the effect was in the wrong direction relative to typical cold weather hypotheses. Moreover,when we ran the analyses separately by race/ethnicity, no consistent pattern appeared in the models containing the spatial lag. Analyses of gap sizes across counties were also generally inconsistent with predictions from the UVR model. Instead, results seemed to provide support for compositional models

    Simultaneous NuSTAR and XMM-Newton 0.5-80 keV spectroscopy of the narrow-line Seyfert 1 galaxy SWIFT J2127.4+5654

    Get PDF
    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 ks performed during three XMM-Newton orbits. We detect a relativistic broadened iron Kα line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58−0.17+0.11. The intrinsic spectrum is steep (Γ = 2.08 ± 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (Ec = 108−10+11 keV) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 rg. These timing results independently support an intermediate black hole spin and a compact corona

    Are Local Economic Development Incentives Promoting Job Growth? An Empirical Case Study

    Get PDF
    At a time when cities are competing with one another to attract or retain jobs within a globalizing economy, city governments are providing an array of financial incentives to stimulate job growth and retain existing jobs, particularly in high cost locations. This paper provides the first systematic and comprehensive analysis of datasets on economic development incentives in New York City over the last fifteen years. The evidence on job retention and creation is mixed. Although many companies do not meet their agreed-upon job targets in absolute terms, the evidence suggests that companies receiving subsidies outperform their respective industries in terms of employment growth, that is, the grow more, or decline less. We emphasize that this finding is difficult to interpret, since firms receiving incentives may not be representative of the industry as a whole. In other words, their above-average performance may simply reflect the fact that the Economic Development Corporation (EDC) selects economically promising companies within manufacturing (or other industries) when granting incentives. At the same time, it is also possible that receiving incentives helps these companies to become stronger

    Antigenicity and immunogenicity of differentially glycosylated HCV E2 envelope proteins expressed in mammalian and insect cells

    Get PDF
    Development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex and high mannose type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A–E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes

    Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    Get PDF
    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks

    Global Ancestry and Cognitive Ability

    No full text
    Using data from the Philadelphia Neurodevelopmental Cohort, we examined whether European ancestry predicted cognitive ability over and above both parental socioeconomic status (SES) and measures of eye, hair, and skin color. First, using multi-group confirmatory factor analysis, we verified that strict factorial invariance held between self-identified African and European-Americans. The differences between these groups, which were equivalent to 14.72 IQ points, were primarily (75.59%) due to difference in general cognitive ability (g), consistent with Spearman’s hypothesis. We found a relationship between European admixture and g. This relationship existed in samples of (a) self-identified monoracial African-Americans (B = 0.78, n = 2,179), (b) monoracial African and biracial African-European-Americans, with controls added for self-identified biracial status (B = 0.85, n = 2407), and (c) combined European, African-European, and African-American participants, with controls for self-identified race/ethnicity (B = 0.75, N = 7,273). Controlling for parental SES modestly attenuated these relationships whereas controlling for measures of skin, hair, and eye color did not. Next, we validated four sets of polygenic scores for educational attainment (eduPGS). MTAG, the multi-trait analysis of genome-wide association study (GWAS) eduPGS (based on 8442 overlapping variants) predicted g in both the monoracial African-American (r = 0.111, n = 2179, p < 0.001), and the European-American (r = 0.227, n = 4914, p < 0.001) subsamples. We also found large race differences for the means of eduPGS (d = 1.89). Using the ancestry-adjusted association between MTAG eduPGS and g from the monoracial African-American sample as an estimate of the transracially unbiased validity of eduPGS (B = 0.124), the results suggest that as much as 20%–25% of the race difference in g can be naïvely explained by known cognitive ability-related variants. Moreover, path analysis showed that the eduPGS substantially mediated associations between cognitive ability and European ancestry in the African-American sample. Subtest differences, together with the effects of both ancestry and eduPGS, had near-identity with subtest g-loadings. This finding confirmed a Jensen effect acting on ancestry-related differences. Finally, we confirmed measurement invariance along the full range of European ancestry in the combined sample using local structural equation modeling. Results converge on genetics as a potential partial explanation for group mean differences in intelligence

    The rod synapse in aging wildtype and Dscaml1 mutant mice.

    No full text
    The retina is an intricately organized neural tissue built on cone and rod pathways for color and night vision. Genetic mutations that disrupt the proper function of the rod circuit contribute to blinding diseases including retinitis pigmentosa and congenital stationary night blindness (CSNB). Down Syndrome cell adhesion molecule like 1 (Dscaml1) is expressed by rods, rod bipolar cells (RBCs), and sub-populations of amacrine cells, and has been linked to a middle age onset of CSNB in humans. However, how Dscaml1 contributes to this visual deficit remains unexplored. Here, we probed Dscaml1's role in the maintenance of the rod-to-RBC synapse using a loss of function mouse model. We used immunohistochemistry to investigate the anatomical formation and maintenance of the rod-to-RBC synapse in the young, adult, and aging retina. We generated 3D reconstructions, using serial electron micrographs, of rod spherules and RBCs to measure the number of invaginating neurites, RBC dendritic tip number, and RBC mitochondrial morphology. We find that while rod-to-RBC synapses form and are maintained, similar to wildtype, that there is an increase in the number of invaginating neurites in rod spherules, a reduction in RBC dendritic tips, and reduced mitochondrial volume and complexity in the Dscaml1 mutant retina compared to controls. We also observed precocious sprouting of RBC dendrites into the outer nuclear layer (ONL) of the Dscaml1 mutant retina compared to controls. These results contribute to our knowledge of Dscaml1's role in rod circuit development and maintenance and give additional insight into possible genetic therapy targets for blinding diseases and disorders like CSNB
    corecore