91 research outputs found

    Flexure compensation simulation tool for TMT-WFOS Spectrograph

    Get PDF
    The Wide Field Optical Spectrograph (WFOS) is one of the first-light instruments of Thirty Meter Telescope. It is a medium resolution, multi object, wide field optical spectrograph. Since 2005 the conceptual design of the instrument has focused on a slit-mask based, grating exchange design that will be mounted at the Nasmyth focus of TMT. Based on the experience with ESI, MOSFIRE and DEIMOS for Keck we know flexure related image motion will be a major problem with such a spectrograph and a compensation system is required to mitigate these effects. We have developed a flexure Compensation and Simulation (FCS) tool for TMT-WFOS that provides an interface to accurately simulate the effects of instrument flexure at the WFOS detector plane (e.g image shifts) using perturbation of key optical elements and also derive corrective motions to compensate the image shifts caused by instrument flexure. We are currently using the tool to do mote-carlo simulations to validate the optical design of a slit-mask concept we call Xchange-WFOS, and to optimize the flexure compensation strategy. We intend to use the tool later in the design process to predict the actual flexure by replacing the randomized inputs with the signed displacement and rotations of each element predicted by global FEA model on the instrument

    Weak Gravitational Lensing Systematics from Image Combination

    Get PDF
    Extremely accurate shape measurements of galaxy images are needed to probe dark energy properties with weak gravitational lensing surveys. To increase survey area with a fixed observing time and pixel count, images from surveys such as the Wide Field Infrared Survey Telescope (WFIRST) or Euclid will necessarily be undersampled and therefore distorted by aliasing. Oversampled, unaliased images can be obtained by combining multiple, dithered exposures of the same source with a suitable reconstruction algorithm. Any such reconstruction must minimally distort the reconstructed images for weak lensing analyses to be unbiased. In this paper, we use the image combination (IMCOM) algorithm of Rowe, Hirata, and Rhodes to investigate the effect of image combination on shape measurements (size and ellipticity). We simulate dithered images of sources with varying amounts of ellipticity and undersampling, reconstruct oversampled output images from them using IMCOM, and measure shape distortions in the output. Our simulations show that IMCOM creates no significant distortions when the relative offsets between dithered images are precisely known. Distortions increase with the uncertainty in those offsets, but become problematic only with relatively poor astrometric precision; e.g., for images similar to those from the Astrophysics Focused Telescope Asset (AFTA) implementation of WFIRST, combining eight undersampled images (sampling ratio Q = 1) with highly pessimistic uncertainty in astrometric registration (σ_d ∼ 10^(-3) pixels) yields an rms shear error of O(10^(-4)). Our analysis pipeline is adapted from that of the Precision Projector Laboratory—a joint project between NASA Jet Propulsion Laboratory and Caltech that characterizes image sensors using laboratory emulations of astronomical data

    Flexure compensation simulation tool for TMT-WFOS Spectrograph

    Get PDF
    The Wide Field Optical Spectrograph (WFOS) is one of the first-light instruments of Thirty Meter Telescope. It is a medium resolution, multi object, wide field optical spectrograph. Since 2005 the conceptual design of the instrument has focused on a slit-mask based, grating exchange design that will be mounted at the Nasmyth focus of TMT. Based on the experience with ESI, MOSFIRE and DEIMOS for Keck we know flexure related image motion will be a major problem with such a spectrograph and a compensation system is required to mitigate these effects. We have developed a flexure Compensation and Simulation (FCS) tool for TMT-WFOS that provides an interface to accurately simulate the effects of instrument flexure at the WFOS detector plane (e.g image shifts) using perturbation of key optical elements and also derive corrective motions to compensate the image shifts caused by instrument flexure. We are currently using the tool to do mote-carlo simulations to validate the optical design of a slit-mask concept we call Xchange-WFOS, and to optimize the flexure compensation strategy. We intend to use the tool later in the design process to predict the actual flexure by replacing the randomized inputs with the signed displacement and rotations of each element predicted by global FEA model on the instrument

    Design and development of MOSFIRE: the Multi-Object Spectrometer For Infra-Red Exploration at the Keck Observatory

    Get PDF
    MOSFIRE is a unique multi-object spectrometer and imager for the Cassegrain focus of the 10 m Keck 1 telescope. A refractive optical design provides near-IR (0.97 to 2.45 μm) multi-object spectroscopy over a 6.14' x 6.14' field of view with a resolving power of R~3,270 for a 0.7" slit width (2.9 pixels in the dispersion direction), or imaging over a field of view of 6.8' diameter with 0.18" per pixel sampling. A single diffraction grating can be set at two fixed angles, and order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd, 4th, 5th or 6th order respectively. A folding flat following the field lens is equipped with piezo transducers to provide tip/tilt control for flexure compensation at the 0.1 pixel level. A special feature of MOSFIRE is that its multiplex advantage of up to 46 slits is achieved using a cryogenic Configurable Slit Unit or CSU developed in collaboration with the Swiss Centre for Electronics and Micro Technology (CSEM). The CSU is reconfigurable under remote control in less than 5 minutes without any thermal cycling of the instrument. Slits are formed by moving opposable bars from both sides of the focal plane. An individual slit has a length of 7.1" but bar positions can be aligned to make longer slits. When masking bars are removed to their full extent and the grating is changed to a mirror, MOSFIRE becomes a wide-field imager. Using a single, ASIC-driven, 2K x 2K H2-RG HgCdTe array from Teledyne Imaging Sensors with exceptionally low dark current and low noise, MOSFIRE will be extremely sensitive and ideal for a wide range of science applications. This paper describes the design and testing of the instrument prior to delivery later in 2010

    High-contrast spectroscopy testbed for segmented telescopes

    Get PDF
    The High Contrast Spectroscopy Testbed for Segmented Telescopes (HCST) at Caltech is aimed at filling gaps in technology for future exoplanet imagers and providing the U.S. community with an academic facility to test components and techniques for high contrast imaging with future segmented ground-based telescope (TMT, E-ELT) and space-based telescopes (HabEx, LUVOIR). The HCST will be able to simulate segmented telescope geometries up to 1021 hexagonal segments and time-varying external wavefront disturbances. It also contains a wavefront corrector module based on two deformable mirrors followed by a classical 3-plane single-stage corona- graph (entrance apodizer, focal-plane mask, Lyot stop) and a science instrument. The back-end instrument will consist of an imaging detector and a high-resolution spectrograph, which is a unique feature of the HCST. The spectrograph instrument will utilize spectral information to characterize simulated planets at the photon-noise limit, measure the chromaticity of new optimized coronagraph and wavefront control concepts, and test the overall scientific functions of high-resolution spectrographs on future segmented telescopes

    Keck Planet Imager and Characterizer: concept and phased implementation

    Get PDF
    The Keck Planet Imager and Characterizer (KPIC) is a cost-effective upgrade path to the W.M. Keck observatory (WMKO) adaptive optics (AO) system, building on the lessons learned from first and second-generation extreme AO (ExAO) coronagraphs. KPIC will explore new scientific niches in exoplanet science, while maturing critical technologies and systems for future ground-based (TMT, EELT, GMT) and space-based planet imagers (HabEx, LUVOIR). The advent of fast low-noise IR cameras (IR-APD, MKIDS, electron injectors), the rapid maturing of efficient wavefront sensing (WFS) techniques (Pyramid, Zernike), small inner working angle (IWA) coronagraphs (e.g., vortex) and associated low-order wavefront sensors (LOWFS), as well as recent breakthroughs in high contrast high resolution spectroscopy, open new direct exoplanet exploration avenues that are complementary to planet imagers such as VLT-SPHERE and the Gemini Planet Imager (GPI). For instance, the search and detailed characterization of planetary systems on solar-system scales around late-type stars, mostly beyond SPHERE and GPI's reaches, can be initiated now at WMKO

    High-contrast spectroscopy testbed for segmented telescopes

    Get PDF
    The High Contrast Spectroscopy Testbed for Segmented Telescopes (HCST) at Caltech is aimed at filling gaps in technology for future exoplanet imagers and providing the U.S. community with an academic facility to test components and techniques for high contrast imaging with future segmented ground-based telescope (TMT, E-ELT) and space-based telescopes (HabEx, LUVOIR). The HCST will be able to simulate segmented telescope geometries up to 1021 hexagonal segments and time-varying external wavefront disturbances. It also contains a wavefront corrector module based on two deformable mirrors followed by a classical 3-plane single-stage corona- graph (entrance apodizer, focal-plane mask, Lyot stop) and a science instrument. The back-end instrument will consist of an imaging detector and a high-resolution spectrograph, which is a unique feature of the HCST. The spectrograph instrument will utilize spectral information to characterize simulated planets at the photon-noise limit, measure the chromaticity of new optimized coronagraph and wavefront control concepts, and test the overall scientific functions of high-resolution spectrographs on future segmented telescopes
    corecore