23,727 research outputs found

    Quantum Cloning, Eavesdropping and Bell's inequality

    Get PDF
    We analyze various eavesdropping strategies on a quantum cryptographic channel. We present the optimal strategy for an eavesdropper restricted to a two-dimensional probe, interacting on-line with each transmitted signal. The link between safety of the transmission and the violation of Bell's inequality is discussed. We also use a quantum copying machine for eavesdropping and for broadcasting quantum information.Comment: LaTex, 13 pages, with 6 Postscript figure

    Ursell operators in statistical physics of dense systems: the role of high order operators and of exchange cycles

    Full text link
    The purpose of this article is to discuss cluster expansions in dense quantum systems as well as their interconnection with exchange cycles. We show in general how the Ursell operators of order 3 or more contribute to an exponential which corresponds to a mean-field energy involving the second operator U2, instead of the potential itself as usual. In a first part, we consider classical statistical mechanics and recall the relation between the reducible part of the classical cluster integrals and the mean-field; we introduce an alternative method to obtain the linear density contribution to the mean-field, which is based on the notion of tree-diagrams and provides a preview of the subsequent quantum calculations. We then proceed to study quantum particles with Boltzmann statistics (distinguishable particles) and show that each Ursell operator Un with n greater or equal to 3 contains a ``tree-reducible part'', which groups naturally with U2 through a linear chain of binary interactions; this part contributes to the associated mean-field experienced by particles in the fluid. The irreducible part, on the other hand, corresponds to the effects associated with three (or more) particles interacting all together at the same time. We then show that the same algebra holds in the case of Fermi or Bose particles, and discuss physically the role of the exchange cycles, combined with interactions. Bose condensed systems are not considered at this stage. The similarities and differences between Boltzmann and quantum statistics are illustrated by this approach, in contrast with field theoretical or Green's functions methods, which do not allow a separate study of the role of quantum statistics and dynamics.Comment: 31 pages, 7 figure

    Dirac-Brueckner-Hartree-Fock calculations for isospin asymmetric nuclear matter based on improved approximation schemes

    Get PDF
    We present Dirac-Brueckner-Hartree-Fock calculations for isospin asymmetric nuclear matter which are based on improved approximations schemes. The potential matrix elements have been adapted for isospin asymmetric nuclear matter in order to account for the proton-neutron mass splitting in a more consistent way. The proton properties are particularly sensitive to this adaption and its consequences, whereas the neutron properties remains almost unaffected in neutron rich matter. Although at present full Brueckner calculations are still too complex to apply to finite nuclei, these relativistic Brueckner results can be used as a guidance to construct a density dependent relativistic mean field theory, which can be applied to finite nuclei. It is found that an accurate reproduction of the Dirac-Brueckner-Hartree-Fock equation of state requires a renormalization of these coupling functions.Comment: 34 pages, 9 figures, submitted to Eur. Phys. J.

    Non--Newtonian viscosity of interacting Brownian particles: comparison of theory and data

    Full text link
    A recent first-principles approach to the non-linear rheology of dense colloidal suspensions is evaluated and compared to simulation results of sheared systems close to their glass transitions. The predicted scenario of a universal transition of the structural dynamics between yielding of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed, and calculations within simplified models rationalize the data over variations in shear rate and viscosity of up to 3 decades.Comment: 6 pages, 2 figures; J. Phys. Condens. Matter to be published (Jan. 2003

    Large amplitude spin waves in ultra-cold gases

    Full text link
    We discuss the theory of spin waves in non-degenerate ultra-cold gases, and compare various methods which can be used to obtain appropriate kinetic equations. We then study non-hydrodynamic situations, where the amplitude of spin waves is sufficiently large to bring the system far from local equilibrium. In the first part of the article, we compare two general methods which can be used to derive a kinetic equation for a dilute gas of atoms (bosons or fermions) with two internal states (treated as a pseudo-spin 1/2). The collisional methods are in the spirit of Boltzmann's original derivation of his kinetic equation where, at each point of space, the effects of all sorts of possible binary collisions are added. We discuss two different versions of collisional methods, the Yvon-Snider approach and the S matrix approach. The second method uses the notion of mean field, which modifies the drift term of the kinetic equation, in the line of the Landau theory of transport in quantum liquids. For a dilute cold gas, it turns out that all these derivations lead to the same drift terms in the transport equation, but differ in the precise expression of the collision integral and in higher order gradient terms. In the second part of the article, the kinetic equation is applied to spin waves in trapped ultra-cold gases. Numerical simulations are used to illustrate the strongly non-hydrodynamic character of the spin waves recently observed with trapped Rb87 atoms. The decay of the phenomenon, which takes place when the system relaxes back towards equilibrium, is also discussed, with a short comment on decoherence.Comment: To appear in Eur. Phys. J.

    Castaing's instability in a trapped ultra-cold gas

    Full text link
    We consider a trapped ultra-cold gas of (non-condensed) bosons with two internal states (described by a pseudo spin) and study the stability of a longitudinal pseudo spin polarization gradient. For this purpose, we numerically solve a kinetic equation corresponding to a situation close to an experiment at JILA. It shows the presence of Castaing's instability of transverse spin polarization fluctuations at long wavelengths. This phenomenon could be used to create spontaneous transverse spin waves.Comment: 5 pages, 3 figures; equation (8) corrected; submitted to EPJ
    corecore