2,756 research outputs found

    A 3D computed tomography based tool for orthopedic surgery planning

    Get PDF
    Series : Lecture notes in computational vision and biomechanics, vol. 19The preparation of a plan is essential for a surgery to take place in the best way possible and also for shortening patient’s recovery times. In the orthopedic case, planning has an accentuated significance due to the close relation between the degree of success of the surgery and the patient recovering time. It is important that surgeons are provided with tools that help them in the planning task, in order to make it more reliable and less time consuming. In this paper, we present a 3D Computed Tomography based solution and its implementation as an OsiriX plugin for orthopedic surgery planning. With the developed plugin, the surgeon is able to manipulate a three-dimensional isosurface rendered from the selected imaging study (a CT scan). It is possible to add digital representations of physical implants (surgical templates), in order to evaluate the feasibility of a plan. These templates are STL files generated from CAD models. There is also the feature to extract new isosurfaces of different voxel values and slice the final 3D model according to a predefined plane, enabling a 2D analysis of the planned solution. Finally, we discuss how the proposed application assists the surgeon in the planning process in an alternative way, where it is possible to three-dimensionally analyze the impact of a surgical intervention on the patient.(undefined

    A Match in Time Saves Nine: Deterministic Online Matching With Delays

    Full text link
    We consider the problem of online Min-cost Perfect Matching with Delays (MPMD) introduced by Emek et al. (STOC 2016). In this problem, an even number of requests appear in a metric space at different times and the goal of an online algorithm is to match them in pairs. In contrast to traditional online matching problems, in MPMD all requests appear online and an algorithm can match any pair of requests, but such decision may be delayed (e.g., to find a better match). The cost is the sum of matching distances and the introduced delays. We present the first deterministic online algorithm for this problem. Its competitive ratio is O(mlog25.5)O(m^{\log_2 5.5}) =O(m2.46) = O(m^{2.46}), where 2m2 m is the number of requests. This is polynomial in the number of metric space points if all requests are given at different points. In particular, the bound does not depend on other parameters of the metric, such as its aspect ratio. Unlike previous (randomized) solutions for the MPMD problem, our algorithm does not need to know the metric space in advance

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Implementation of a standardized protocol to manage elderly patients with low energy pelvic fractures: can service improvement be expected?

    Get PDF
    Purpose: The incidence of low energy pelvic fractures (FPFs) in the elderly is increasing. Comorbidities, decreased bone-quality, problematic fracture fixation and poor compliance represent some of their specific difficulties. In the absence of uniform management, a standard operating procedure (SOP) was introduced to our unit, aiming to improve the quality of services provided to these patients. Methods: A cohort study was contacted to test the impact of (1) using a specific clinical algorithm and (2) using different antiosteoporotic drugs. Multivariate regression analysis was used to determine prognostic factors. Study endpoints were the time-to-healing, length-of-stay, return to pre-injury mobility, union status, mortality and complications. Results: A total of 132 elderly patients (≥65 years) admitted during the period 2012–2014 with FPFs were enrolled. High-energy fractures, acetabular fractures, associated trauma affecting mobility, pathological pelvic lesions and operated FPFs were used as exclusion criteria. The majority of included patients were females (108/132; 81.8%), and the mean age was 85.8 years (range 67–108). Use of antiosteoporotics was associated with a shorter time of healing (p = 0.036). Patients treated according to the algorithm showed a significant protection against malunion (p < 0.001). Also, adherence to the algorithm allowed more patients to return to their pre-injury mobility status (p = 0.039). Conclusions: The use of antiosteoporotic medication in elderly patients with fragility pelvic fractures was associated with faster healing, whilst the adherence to a structured clinical pathway led to less malunions and non-unions and return to pre-injury mobility state

    mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression.

    Get PDF
    Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes. Our results show that mTOR complex 1 (mTORC1) activity is essential for glial marker expression and expression of Sterol Regulatory Element-Binding Protein (SREBP) target genes. Moreover, SREBP target gene activation by statin treatment promoted lipogenic gene expression, induced mTORC1 activation and stimulated Schwann cell differentiation. To investigate mTORC1 downstream signaling we expressed a mutant S6K1, which subsequently induced the expression of the Schwann cell marker S100b, but did not affect lipogenic gene expression. This suggests that S6K1 dependent and independent pathways downstream of mTORC1 drive AFS cells to early Schwann cell differentiation and lipogenic gene expression. In conclusion our results propose that future strategies for peripheral nervous system regeneration will depend on ways to efficiently induce the mTORC1 pathway
    corecore