402 research outputs found

    Self-trapping of Bose-Einstein condensates in optical lattices

    Full text link
    The self-trapping phenomenon of Bose-Einstein condensates (BECs) in optical lattices is studied extensively by numerically solving the Gross-Pitaevskii equation. Our numerical results not only reproduce the phenomenon that was observed in a recent experiment [Anker {\it et al.}, Phys. Rev. Lett. {\bf 94} (2005)020403], but also find that the self-trapping breaks down at long evolution times, that is, the self-trapping in optical lattices is only temporary. The analysis of our numerical results shows that the self-trapping in optical lattices is related to the self-trapping of BECs in a double-well potential. A possible mechanism of the formation of steep edges in the wave packet evolution is explored in terms of the dynamics of relative phases between neighboring wells.Comment: 8 pages, 15 figure

    Sensitive frequency-dependence of the carrier-envelope phase effect on bound-bound transition: an interference perspective

    Full text link
    We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multi-photon transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand the sensitivity of the CEP effect to laser's carrier frequency. Multi-level influence on the CEP effect is also discussed

    Adaptive Laboratory Evolution of Halomonas bluephagenesis Enhances Acetate Tolerance and Utilization to Produce Poly(3-hydroxybutyrate)

    Get PDF
    Acetate is a promising economical and sustainable carbon source for bioproduction, but it is also a known cell-growth inhibitor. In this study, adaptive laboratory evolution (ALE) with acetate as selective pressure was applied to Halomonas bluephagenesis TD1.0, a fast-growing and contamination-resistant halophilic bacterium that naturally accumulates poly(3-hydroxybutyrate) (PHB). After 71 transfers, the evolved strain, B71, was isolated, which not only showed better fitness (in terms of tolerance and utilization rate) to high concentrations of acetate but also produced a higher PHB titer compared with the parental strain TD1.0. Subsequently, overexpression of acetyl-CoA synthetase (ACS) in B71 resulted in a further increase in acetate utilization but a decrease in PHB production. Through whole-genome resequencing, it was speculated that genetic mutations (single-nucleotide variation (SNV) in phaB, mdh, and the upstream of OmpA, and insertion of TolA) in B71 might contribute to its improved acetate adaptability and PHB production. Finally, in a 5 L bioreactor with intermittent feeding of acetic acid, B71 was able to produce 49.79 g/L PHB and 70.01 g/L dry cell mass, which were 147.2% and 82.32% higher than those of TD1.0, respectively. These results highlight that ALE provides a reliable method to harness H. bluephagenesis to metabolize acetate for the production of PHB or other high-value chemicals more efficiently

    Performance-based seismic isolation design using the theory of spatially concave friction distribution

    Get PDF
    Seismic isolation devices were designed to protect three similar building structures, containing different objects with different fragilities, in a strong earthquake region. And a performance-based assessment framework, established by the PEER, was used to identify the seismic isolation efficiency of these devices. It optimized the ratios of spring part, viscous damping part and friction part in the seismic isolation devices, aiming at different functional buildings. Results show that a spatially concave friction distribution, combined with a weak spring, not only can reduce the structural acceleration response during earthquakes, but also decrease the structural residual displacement after earthquakes. Moreover, the spatially concave friction distribution can dissipate earthquake energy, but cannot hinder the recentering of structure like that of general uniform friction distributions. Consequently, the spatially concave friction distribution can partly or fully replace the viscous dampers, which are more expensive and short-lived. The reasonable combination of different components in the seismic isolation devices can satisfy different seismic requirements, aiming at different functional buildings

    Collapse Analysis of a Transmission Tower-Line System Induced by Ice Shedding

    Get PDF
    Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers

    Performance-based seismic isolation design using the theory of spatially concave friction distribution

    Get PDF
    Seismic isolation devices were designed to protect three similar building structures, containing different objects with different fragilities, in a strong earthquake region. And a performance-based assessment framework, established by the PEER, was used to identify the seismic isolation efficiency of these devices. It optimized the ratios of spring part, viscous damping part and friction part in the seismic isolation devices, aiming at different functional buildings. Results show that a spatially concave friction distribution, combined with a weak spring, not only can reduce the structural acceleration response during earthquakes, but also decrease the structural residual displacement after earthquakes. Moreover, the spatially concave friction distribution can dissipate earthquake energy, but cannot hinder the recentering of structure like that of general uniform friction distributions. Consequently, the spatially concave friction distribution can partly or fully replace the viscous dampers, which are more expensive and short-lived. The reasonable combination of different components in the seismic isolation devices can satisfy different seismic requirements, aiming at different functional buildings

    Layer-wise Representation Fusion for Compositional Generalization

    Full text link
    Despite successes across a broad range of applications, sequence-to-sequence models' construct of solutions are argued to be less compositional than human-like generalization. There is mounting evidence that one of the reasons hindering compositional generalization is representations of the encoder and decoder uppermost layer are entangled. In other words, the syntactic and semantic representations of sequences are twisted inappropriately. However, most previous studies mainly concentrate on enhancing token-level semantic information to alleviate the representations entanglement problem, rather than composing and using the syntactic and semantic representations of sequences appropriately as humans do. In addition, we explain why the entanglement problem exists from the perspective of recent studies about training deeper Transformer, mainly owing to the ``shallow'' residual connections and its simple, one-step operations, which fails to fuse previous layers' information effectively. Starting from this finding and inspired by humans' strategies, we propose \textsc{FuSion} (\textbf{Fu}sing \textbf{S}yntactic and Semant\textbf{i}c Representati\textbf{on}s), an extension to sequence-to-sequence models to learn to fuse previous layers' information back into the encoding and decoding process appropriately through introducing a \emph{fuse-attention module} at each encoder and decoder layer. \textsc{FuSion} achieves competitive and even \textbf{state-of-the-art} results on two realistic benchmarks, which empirically demonstrates the effectiveness of our proposal.Comment: work in progress. arXiv admin note: substantial text overlap with arXiv:2305.1216
    corecore