1,064 research outputs found

    Effect of double-fibre reinforcement on localized bulging of an inflated cylindrical tube of arbitrary thickness

    Get PDF
    We consider localized bulging of an inflated cylindrical hyperelastic tube of arbitrary thickness that is helically reinforced by two families of fibres. It is shown that localized bulging may become impossible, irrespective of the end conditions, when the tube wall becomes thick enough. This is in sharp contrast with an isotropic hyperelastic tube without fibre reinforcement for which localized bulging has previously been shown to be possible no matter how thick the tube wall is and for which the membrane theory provides a very good approximation for the ratio of wall-thickness/radius as large as 0.67. Our findings provide a feasible explanation on why aneurysms cannot occur in healthy arteries but become possible following pathological changes. They can also be used to guide the design of tubular structures where localized bulging should be prevented

    Effects of pre-stretch, compressibility and material constitution on the period-doubling secondary bifurcation of a film/substrate bilayer

    Get PDF
    We refine a previously proposed semi-analytical method, and use it to study the effects of pre-stretch, compressibility and material constitution on the period-doubling secondary bifurcation of a uni-axially compressed film/substrate bilayer structure. It is found that compared with the case of incompressible neo-Hookean materials for which the critical strain is approximately 0.17 when the thin layer is much stiffer than the substrate, the critical strain when the Gent materials are used is a monotonically increasing function of the constant Jm that characterizes material extensibility, becoming as small as 0.12 when Jm is equal to 1, whereas for compressible neo-Hookean materials the critical strain is a monotonically decreasing function of Poisson’s ratio; the period-doubling secondary bifurcation seems to become impossible when Poisson’s ratio is approximately equal to 0.307. The latter result may indicate that when Poisson’s ratio is small enough there are other preferred secondary bifurcations — an example is given where a secondary bifurcation mode with times the original period occurs at a lower strain value. The effect of a pre-stretch (compression or extension) in the substrate is not monotonic, giving rise to a critical strain that varies between 0.15 and 0.22

    On the near-critical behavior of cavitation in elastic plane membranes

    Get PDF
    Abstract Material cavitation under tensile loading is often studied by assuming the pre-existence of a small void. In this case the void would initially grow but without significant change in its size, and cavitation is said to take place if this slow growth is followed by rapid growth at higher load values. In the limit when the original void radius δ tends to zero, there will be no growth until a load or stretch measure, λ say, reaches a well-defined critical value λ cr at which a cavity appears suddenly. In this paper we study the near-critical asymptotic behavior of cavitation in plane membranes when δ is not zero but small, and show that the near-critical behavior is governed by a scaling law in the form λ − λ cr = C ( δ / L ) m , where L is the undeformed outer radius of the plane membrane, and C and m are non-dimensional constants. The positive power m in general depends on the material model used, but for the three classes of material models considered, it happens to be equal to 2 ( 1 + ν ) / ( 3 + ν ) in each case, where ν is Poisson’s ratio for infinitesimal deformations. If a pre-existing void is viewed as an imperfection, then this scaling law describes the imperfection sensitivity of cavitation: it states that in the presence of imperfections significant void growth would occur when λ were increased to within an order ( δ / L ) m interval around λ cr

    Scanning and filling : ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data

    Get PDF
    Genotyping-by-sequencing (GBS) represents a highly cost-effective high-throughput genotyping approach. By nature, however, GBS is subject to generating sizeable amounts of missing data and these will need to be imputed for many downstream analyses. The extent to which such missing data can be tolerated in calling SNPs has not been explored widely. In this work, we first explore the use of imputation to fill in missing genotypes in GBS datasets. Importantly, we use whole genome resequencing data to assess the accuracy of the imputed data. Using a panel of 301 soybean accessions, we show that over 62,000 SNPs could be called when tolerating up to 80% missing data, a five-fold increase over the number called when tolerating up to 20% missing data. At all levels of missing data examined (between 20% and 80%), the resulting SNP datasets were of uniformly high accuracy (96– 98%). We then used imputation to combine complementary SNP datasets derived from GBS and a SNP array (SoySNP50K). We thus produced an enhanced dataset of >100,000 SNPs and the genotypes at the previously untyped loci were again imputed with a high level of accuracy (95%). Of the >4,000,000 SNPs identified through resequencing 23 accessions (among the 301 used in the GBS analysis), 1.4 million tag SNPs were used as a reference to impute this large set of SNPs on the entire panel of 301 accessions. These previously untyped loci could be imputed with around 90% accuracy. Finally, we used the 100K SNP dataset (GBS + SoySNP50K) to perform a GWAS on seed oil content within this collection of soybean accessions. Both the number of significant marker-trait associations and the peak significance levels were improved considerably using this enhanced catalog of SNPs relative to a smaller catalog resulting from GBS alone at 20% missing data. Our results demonstrate that imputation can be used to fill in both missing genotypes and untyped loci with very high accuracy and that this leads to more powerful genetic analyses

    Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber

    Get PDF
    Author name used in this publication: Yanbiao LiaoAuthor name used in this publication: Hwayaw TamAuthro name used in this publication: P. K. A. Wai2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors

    Get PDF
    Author name used in this publication: P. A. ChildsAuthor name used in this publication: H. Y. TamAuthor name used in this publication: C. LuAuthor name used in this publication: P. K. A. Wai2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0

    Full text link
    Using 58 million J/psi and 14 million psi' decays obtained by the BESII experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous measurements.Comment: 9 pages, 8 figures, RevTex

    First observation of psi(2S)-->K_S K_L

    Full text link
    The decay psi(2S)-->K_S K_L is observed for the first time using psi(2S) data collected with the Beijing Spectrometer (BESII) at the Beijing Electron Positron Collider (BEPC); the branching ratio is determined to be B(psi(2S)-->K_S K_L) = (5.24\pm 0.47 \pm 0.48)\times 10^{-5}. Compared with J/psi-->K_S K_L, the psi(2S) branching ratio is enhanced relative to the prediction of the perturbative QCD ``12%'' rule. The result, together with the branching ratios of psi(2S) decays to other pseudoscalar meson pairs (\pi^+\pi^- and K^+K^-), is used to investigate the relative phase between the three-gluon and the one-photon annihilation amplitudes of psi(2S) decays.Comment: 5 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
    corecore