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.We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a
Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using
Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated.
Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of
9:45 nm=MPa and an accuracy of�7:8 kPa using wavelength-encoded data and an effective sensitivity of
−55:7 cm−1=MPa and an accuracy of �4:4 kPa using wavenumber-encoded data. Chirp-based measure-
ments, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges
with an accuracy of �5:5 kPa for the full range of measured pressures using wavelength-encoded data
and dropping to within �2:5 kPa in the range of 0.17 to 0:4 MPa using wavenumber-encoded data. Im-
provements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sen-
sing purposes. © 2010 Optical Society of America
OCIS codes: 060.2370, 060.5295, 070.4340, 120.5475.

1. Introduction

Photonic crystal fibers (PCFs) [1,2] are a particular
kind of optical waveguide that confine light with a
microstructured lattice that either acts as an effec-
tive medium, offering a lower refractive index
cladding (like conventional fiber), or provides an op-
tical stop band, that spatially restricts the guided
mode from entering it and leaking out. Despite their
drawbacks compared to conventional optical fiber,
such as having a high insertion loss and cost as well
as the difficulty of coupling and fabricating fiber com-
ponents, there are many available advantages, such

as being single mode over the entire transparency
range of silica [3], enabling evanescent interaction
in the hole structure [4], having low bending loss
and the capability for high birefringence and optical
nonlinearities. For certain sensing applications,
these advantages make them the much more desir-
able choice.

Hydrostatic pressure (i.e., pressure that acts uni-
formly with respect to the azimuthal direction) act-
ing on a length of PCF will deform the positioning
and eccentricity of the hole structure, changing the
birefringence [5]. Using birefringent PCF, where
there is an asymmetry in the hole structure of the
photonic crystal [6], gives an offset to this birefrin-
gence and improves the sensitivity. Birefringent PCF
is generally made entirely from pure silica, and it
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offers the ability to perform temperature-insensitive
measurements [7] unlike PANDA and bow tie de-
signs where the thermal properties of the different
component materials vary. In addition, the birefrin-
gence of highly birefringent PCF is typically 1 order
of magnitude larger than that of conventional high-
birefringent fiber [6]—permitting both greater
pressure sensitivity and reduced temperature cross
sensitivity.

The birefringent properties of a fiber would
normally be measured using polarimetric detection.
Polarimetric detection, however, is generally unde-
sirable as it requires components for polarization
control that add to the system complexity and cost.
An alternate method is found in using a Sagnac loop,
where the polarization states are different for the
two propagation paths [8], and so the birefringence
creates an optical phase difference that can be mea-
sured from the wavelength-encoded interference
spectrum. As birefringent PCF offers reduced bend-
induced coupling between the polarization states,
small compact Sagnac loops are possible.

Fourier analysis is widely used for digital postpro-
cessing, e.g., in such applications as image proces-
sing, acoustics, and oceanography. The discrete
Fourier transform takes a sampled spectrum and
converts it into a dual domain where the individual
frequency components can be directly analyzed. In
the field of optical fiber sensing, it is used to analyze
the spectra of interferometric sensors to determine
properties such as the gap length of Fabry–Perot sen-
sors [9], as well as providing an additional domain
over which to perform multiplexing [10,11].

In this paper, Fourier analysis is used to experi-
mentally examine the response of the phase shift
and chirp in the interference of a Sagnac interferom-
eter comprised of highly birefringent PCF to an ap-
plied hydrostatic pressure. The accuracy of the two
methods for determining pressure is compared as
is the use of interpolation to perform Fourier analysis
on the wavenumber domain data.

2. Theory

We start by modeling the interference spectrum of
any interferometer as a Taylor expansion over the
measured domain variable D (wavelength λ or wave-
number β) as having a phase difference:

ψD ¼ ϕ0;D þ
X∞
j¼1

kj;DðD −D0Þj: ð1Þ

For the case of a Sagnac interferometer, the optical
phase difference is given by [8]

ψ ¼ 2π
λ BL; ð2Þ

where L is the length of the birefringent fiber in the
interferometer and the birefringence, B, is defined as
the difference between the effective refractive indices

of the respective slow and fast orthogonal polariza-
tion states as B ¼ ns − nf .

The higher order kj;D terms can thus be seen to be
incrementally related to the higher order differen-
tials of the birefringence. Working in the wavenum-
ber domain, this relation is one of proportionality,
and

kjþ1;β ¼
L
j!

dj

dβj
BðβÞ

����
β¼β0

; ð3Þ

where the single bar and subscripted expression β ¼
β0 imply a substitution of β0 for β in the expression to
the left of the bar. In order to apply Fourier analysis
for this domain; however, sampling either needs to be
linear in the wavenumber domain or interpolated
onto a linearly sampled set.

Working in the wavelength domain, it is the more
complex series of differentials:

kjþ1;λ ¼
2πL
j!

dj

dλj
BðβÞ
λ

����
λ¼λ0

: ð4Þ

Conventionally, changes in the period (τβ ¼
2π=BL ¼ 2π=k1;β, τλ ¼ λ2=BL ¼ 2πλ=k1;λ) or the more
sensitive phase shift (ΔD0 ¼ �ðD0=τDÞΔτD) of the
measured spectrum are used to determine measur-
and-induced changes. However, theoretical anal-
ysis of the hydrostatic pressure acting on highly
birefringent PCF has shown that the group modal
birefringence:

G ¼ B − λdB
dλ ¼ −λ2 k2;λ

2πL ; ð5Þ

is slightly more sensitive than that of the phase mod-
al birefringence, B [5]. On this basis, it is expected to
be useful to investigate the higher order kj;D:j ≥ 2
terms for their potential to improve the sensitivity
over conventional analysis. In order to extract these
terms, we make use of Fourier analysis.

The Fourier dual representation of the interfer-
ence spectrum given by Eq. (1) in the inverse domain,
s, is given by

F ðcosψDÞ ¼
1
2
e2πiD0s

�
eiϕ0;Dδ

�
s−

k1;D
2π

�
�

ffiffiffiffiffiffiffiffiffiπ
k2;D

r
e
−i

�
π2s2
k2;D

−
π
4

�

� 2πffiffiffiffiffiffiffiffiffiffiffi
3k3;D3

p Ai
�

−2πsffiffiffiffiffiffiffiffiffiffiffi
3k3;D3

p
�
� � � �þh:c:

�
; ð6Þ

where δðsÞ is the Dirac delta function, � is the convo-
lution operator, AiðsÞ is the Airy function of the first
kind, and h.c. denotes the terms required tomaintain
Hermitian symmetry (conjugation and reversal in s).
This equation is further modified by the inclusion of
a DC peak proportional to δðsÞ due to the DC offset of
the entire spectrum as well as convolution with the
Fourier transform of the envelope function (the en-
velope function is the function in the wavelength
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or wavenumber domain that band limits the interfer-
ence by modulating it).

It can be seen that the coefficients of the series gi-
ven in Eq. (1) can be found by isolating the individual
terms of Eq. (6). The phase term outside the brackets
is the factor most readily used to obtain accurate
measurand-induced shifts in the resonant wave-
length/wavenumber of an optical sensor spectrum.
It can be calculated accordingly as [10]

D0 ¼ −
1
2π

dΦD

ds
; ð7Þ

whereΦD is the phase spectrum of the Fourier trans-
form of cosψD and the overbar represents taking a
weighted average of the property over the range of
the harmonic peak corresponding to the convolved
delta function of Eq. (6). For optimal results, the
weight is taken as the magnitude spectrum of the
peak (either in its initial state to ensure stability
or its current state to allow a measure of adaptive
processing).

The peak location of the delta function of Eq. (6)
can also be used to determine the period of the inter-
ference, τD, which also experiences measurand-
induced changes. Its sensitivity is less than that of
the wavelength shift (as τD=D0 ≪ 1) and is not of
as much value except in its use in determining other
terms. As such, for the purpose of determining the
measurand, an analysis of k1;D is made obsolete by
an analysis of D0 and will not be performed herein.
Nevertheless, a stable method for determining the
period of the interference is obtained via the expec-
tation value:

k1;D ¼ 2π
P

MDsP
MD

; ð8Þ

where MD is the magnitude spectrum and the sum-
mation is performed over the harmonic peak.

The higher order terms are generally of limited
usefulness and, to the best extent of our knowledge,
have not been applied to optical fiber sensing to date.
Their effects can readily be seen in that the harmonic
peak is wider than the DC peak centered at zero.
Whereas the DC peak is broadened by the transform
of the envelope alone, the harmonic peak is broa-
dened by the transform of the envelope as well as
the higher order terms. For interference fringes with-
out much chirp, there is not much difference between
the peaks, but for fringes with a large amount of
chirp, such as with cascaded or self-interfering
long-period gratings, there is a significant amount
of broadening visible in the harmonic peak.

Individually, the higher order terms of Eq. (6) are
not band limited. However, due to their rapid oscil-
latory nature in s, convolution with each other
(and the transform of the envelope) effectively band
limits each of them to only a few cycles. This allows
convergence of the series of terms in Eq. (6), provided
there is sufficient convergence of the series in Eq. (1).

The second-order term can be obtained similarly to
that of the wavelength shift as

k2;D ¼ −2π2
�
d2ΦD

ds2

�
−1
: ð9Þ

The third-order term is not so simply obtained due
to the nature of the Airy function. Its extraction is
beyond the scope of this article and, hopefully, will
be addressed in future research. A rough qualitative
approach would be to measure the degree of odd sym-
metry about s ¼ k1;D=2π in the magnitude spectrum,
as the magnitude spectrum of the even order terms
and the transform of the envelope are all even sym-
metric, whereas the Airy function has both even and
odd symmetric components that retained their sym-
metry when convolved with an even symmetric
function.

As this third term is asymmetric in s (the Airy
function being weighted more heavily on the nega-
tive s side), it will introduce a skew in Eq. (8) for de-
termining the value of k1;D. This skew will introduce
errors in k1;D and will also induce errors in D0, as the
weighted average in Eq. (7) no longer symmetrically
cancels out the differential of the π2s2=k2;D phase
term as well as higher order terms. An expectation
of the error induced in D0 is independent of the
weight chosen to evaluate Eq. (7), provided it has
even symmetry about the center of the harmonic
peak. The upper limit of the error ΔD0 in this case
is given by

jΔD0j <
����Δk1;D
2k2;D

þOðk4;DÞ
����; ð10Þ

whereΔk1;D is the skew error in k1;D introduced from
the asymmetry of the higher order odd terms of Eq.
(6) and the inequality is due to the aforementioned
damping out of the rapidly oscillating higher order
terms in s by convolution with the transform of
the envelope—reducing its influence in the differen-
tial in Eq. (7). A solution to reduce this error would be
to use an asymmetrically weighted average based on
the asymmetry in the magnitude spectrum. Further
research will attempt to address this.

Changes to the birefringence, and its differentials,
can be readily measured using Eqs. (7)–(9), (3), and
(4) above. The following experimental investigation
is made to compare the appropriateness of using
the higher order terms k2;D to that of the conven-
tional analysis of D0.

3. Experiment

We spliced 60 cm of polarization-maintaining PCF
(PM-1550-01, Blaze Photonics) to two ports on the
same side of a 3 dB coupler [12]. A cross section of
the fiber is shown in Fig. 1. Birefringence can be seen
to be due to having two larger holes on opposite sides
of the core. The fiber has a pitch length (hole spacing)
of 4.4 and hole diameters of 2:2 μmand 4:5 μm for the
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normal and larger holes, respectively. Light was
launched into one of the remaining ports of the
coupler using a superluminescent diode (SLD)
pair (DenseLight Semiconductors DL-CS48H5A and
DL-CS6107A) and the spectrum measured from the
other with an optical spectrum analyzer (Agilent
86140B). As the Sagnac loop is polarization indepen-
dent [13] and good visibility of the interference was
seen, no further polarization control was necessary
for the experimental setup beyond use of the polar-
ization-maintaining PCF.

The sensor was placed in a sealed chamber and ex-
posed to pressures in the range of 0.1 to 0:4 MPa,
which were monitored using a pressure gauge (CO-
MARK C9557). Pressure was applied using an air
compressor with an attached regulator. Using the
regulator, the pressure level could be accurately con-
trolled and maintained. A reference reading of the
spectrum of the SLD pair was taken to give a base-
line for transmission measurements.

Two sets of experiments were performed to estab-
lish the behavior of the sensor. The first set was per-
formed to establish the response of the sensor; the
pressure being varied smoothly; lowering from 0.4
to 0:1 MPa. The second set was performed at a fixed
set of pressures so as to better quantify the accuracy
limitations of the sensor.

Measurements of the transmission spectra of the
Sagnac interferometer at the various pressures were

collected for the first set of experiments. Figure 2
shows such a spectrum for the case where the pres-
sure was 0:4 MPa. Fourier transforms of the (wave-
length-domain-based) spectra were calculated and
can be seen in the overall magnitude spectrum for
one measurement presented in Fig. 3 and the phase
spectra near s ¼ k1;λ=2π for the full set of measure-
ments in Fig. 4. Ringing is seen on the magnitude
spectrum in Fig. 3 due to zero padding the wave-
length domain by a factor of 8 (i.e., 216–213 points
of zero value are added on after the 213 points of
the measured spectrum) to give a sufficient number
of data points in the Fourier domain for the following
analysis [this zero padding corresponds to an inter-
polation in the Fourier domain giving 8 times the
number of points to average over in Eqs. (7)–(9)].
As this ringing effect has a zero phase, it does not
disrupt the measurements of D0 and k2;D in any way.

All the measured spectra were then interpolated to
give a linear sampling rate in the wavenumber do-
main. Fourier transforms were calculated, and the
overall magnitude spectrum for one measurement
and the phase spectra near s ¼ k1;β=2π for the full
set of measurements are presented in Figs. 5 and
6, respectively.

The terms λ0 and k2;λ, for data represented in the
wavelength domain, were determined for each mea-
surement using Eqs. (7) and (9). A graph of these two
properties with respect to pressure is presented in
Figs. 7 and 8, respectively. Similarly, for data repre-
sented in the wavenumber domain, the terms β0 and
k2;β were determined and are presented in Figs. 9
and 10, respectively.

Fig. 1. Cross section of the polarization-maintaining PCF used as
a pressure sensor [14].

Fig. 2. Transmission spectrum of the polarization-maintaining
PCF-based Sagnac interferometer at 0:4 MPa pressure.

Fig. 3. Mλ, magnitude of the Fourier transform of the sensor spec-
trum over the wavelength at 0:4 MPa of pressure.

Fig. 4. (Color online) Φλ, Phase of the Fourier transform of the
sensor spectra over the wavelength (inset, pressure in MPa).
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For the second set of experiments (that of quanti-
fying the accuracy of measurement), further testing
was performed by holding the pressure at 0.11, 0.13,
0.196, 0.308, and 0:4 MPa over a time period of
8 min each and monitoring the stability of the spec-
trum. Five measurements were taken at each pres-
sure during these time periods. On average, the
phase was measured to fluctuate with a standard de-
viation of Δλ0 ¼ 74 pm and the chirp, accordingly, as
Δk2;λ ¼ 8:4 × 10−8 nm−2. Variation was seen in the
amount of fluctuation at each pressure, suggesting
that a large component of the variation was due to
the pressure stability of the chamber rather than
being intrinsic to the measurement scheme. None-
theless, it sufficed for comparing the difference be-
tween measurement methodologies. On average
there was no general trend seen with respect to pres-
sure except for the case of the chirp measurements
where greater fluctuation was seen at higher pres-
sures. Similar results for analysis performed in the
wavenumber domain gives Δβ0 ¼ 0:25 cm−1 and
Δk2;β ¼ 8:2 × 10−10 cm2, again with greater fluctua-
tion being seen at higher pressures in the chirp
measurements.

4. Discussion

There are three readily identifiable causes for chirp
in the interference spectrum. The first is due to the
measurement being carried out in a domain that
naturally gives rise to chirp (e.g., wavelength) due
to the interference in it being nonlinearly related
to beat length. This can be avoided by transforming
to the wavenumber domain where there is a linear
relation. The second cause is due to dispersion in

the fiber, and it is this cause that is investigated
for pressure sensing.

The final cause is due to any possible changes in
the measurand as the spectrum is scanned; the pri-
mary cause being air leaking out of the chamber. The
rate of leakage is proportional to the pressure differ-
ential between the inside and outside of the chamber,
ΔP, giving differentials for the pressure: dP=dt ¼
−αΔP and d2P=dt2 ¼ α2ΔP. Given a positive sweep
rate, dλ=dt ¼ R, and phase sensitivity, dϕ=dP ¼ σ,
the induced detuning, dϕ=dλ, and chirp, d2ϕ=dλ2,
are negatively and positively valued, respectively,
causing a decrease in λ0 (as opposed to what is seen
in Fig. 7) and an increase in k2;λ with applied pres-
sure. For small leaks (αλ0 ≪ R), the former effect is
greater than the latter, and, as such, the effect on
chirp is minimal and cannot account for what is seen
in Fig. 8.

The existence of chirp and higher order dispersion
in the interference can readily be seen in Fig. 3,
where the harmonic peak has been significantly
broadened over what is the case for the DC peak.
The even order chirp terms can be directly seen in
the nonlinearity of the phase spectrum in Figs. 4
and 6.

Although, visually, there is not much change in the
phase (or, for that matter, themagnitude) of the Four-
ier spectra, it can still be seen in Figs. 4 and 6 that
the changes to the chirp and higher order factors out-
weigh the changes to the linear phase slope.

From Eq. (5) and the results of Fig. 8, it can be seen
that the group modal birefringence decreases with
pressure, in agreement with what has been shown
to be the case using finite element modeling for this
fiber geometry [5]. Considering that changes to k1;β

Fig. 5. Mβ, magnitude of the Fourier transform of the sensor spec-
trum over the wavenumber at 0:4 MPa of pressure.

Fig. 6. (Color online) Φβ, phase of the Fourier transform of the
sensor spectra over the wavenumber (the inset is the pressure
in MPa).

Fig. 7. Variation of the parameter λ0 with respect to pressure.

Fig. 8. Variation of the parameter k2;λ with respect to pressure.
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are inversely proportional to changes in β0, Eq. (3)
and the results of Fig. 9 show that the phase modal
birefringence increases with pressure, contrary to
what is presented in [5], where dB=dP is claimed
to be negative. The positive value found herein was
further confirmed by visually identifying the reso-
nances of the spectrum shifting to a lower wave-
number/higher wavelength with an increase in
pressure in agreement with previous experimental
studies [14,15].

From Fig. 7 we see that the phase-based measure-
ment for λ0 varies more or less linearly with applied
pressure, which has been shown to be the case the-
oretically and experimentally earlier [13]. No such
theoretical relation exists for k2;D, and the linearity
seen in Fig. 8 will not necessarily be the case for
all pressure ranges or fiber types.

Linear fits to the data in Figs. 7–10 give the
respective sensitivities of 9:45 nm=MPa, 1:54 ×
10−5 nm−2=MPa, −55:7 cm−1=MPa, and 3:22 ×
10−7 cm2=MPa. The Pearson R2 values, describing
how well the linear trends fit, are 0.97, 0.98, 0.98,
and 0.94, respectively, showing good linearity for
all but k2;β, the linear chirp based on data expressed
in the wavenumber domain. Owing to this nonlinear-
ity, the response is better characterized as having a
linear sensitivity of 7:87 × 10−8 cm2=MPa for pres-
sures below 0:17 MPa and a quadratic dependence
on the pressure in megapascal, P, as ð8:17 × 10−7 ·
P2

− 6:04 × 10−8 · PÞ cm2 above it. This latter depen-
dence inverts to give ΔP ¼ ð−2:26 × 1013Δk2;β þ
3:46 × 107ÞΔk2;β MPa.

The calculated sensitivities are much larger than
what is observed by making direct observations of
the shift of the fringes in the wavelength and wave-
number domains (the dip near 1530 nm varies by
only 0:977 nm over the whole 0:3 MPa range). This
is due to the asymmetry of the third-order term shift-
ing the measured location of the harmonic peak from
the true value of k1;D=2π, as was discussed in the the-
ory above concerning Eq. (10). From Figs. 4 and 6 it
can be seen that the phase slope varies strongly with
the frequencies in nanometers−1 and centimeters, re-
spectively, and so a small shift in the harmonic peak
location will lead to a large change in the phase slope.
Any attempt to correct for shifts in the harmonic
peak location is not helpful, as the signal-to-noise ra-
tio for measuring the phase is reduced due to a cor-
responding reduction in the magnitude spectrum

when measuring offset from the center of the harmo-
nic peak. As such, it is best to measure the phase
with the harmonic peak as is and calibrate out the
difference; keep in mind the obtained shifts are
not the true values, but as this is only an intermedi-
ate value in determining the pressure and provided
that the behavior is repeatable, then it will not be a
problem.

Based on the stability measurements performed at
the end of the experimental section, the above linear
fits would imply accuracies for measuring pressure of
�7:8 kPa and �5:5 kPa for wavelength domain mea-
surements based on linear phase and chirp, respec-
tively, and �4:4 kPa and �2:5 kPa for wavenumber
domain measurements based on linear phase and
chirp, respectively. However, owing to the nonlinear-
ity of Fig. 10, this latter value for the accuracy does
not adequately quantify it well throughout. In the
linear region at low pressures below 0:17 MPa, the
accuracy is measured to be �7:9 kPa, whereas at
pressures above 0:17 MPa the accuracy was within
�2:5 kPa throughout.

Whereas measurements of the wavelength shift
guarantee linearity of response and offer simplicity
of analysis, the results show that better accuracy
may be obtained by measuring the birefringent dis-
persion obtained using Fourier analysis from the
chirp of the phase spectrum. With proper calibration
of the sensor response, the improvement in accuracy
obtained definitely makes the increase in complexity
worthwhile. Similarly, converting the measured
spectrum to a function of the wavenumber introduces
the additional complexity of interpolating the data-
set; however, the improvement in accuracy clearly
makes it also worthwhile.

While performing the analysis, changes in the
magnitude spectrumwith applied pressure were also
noted. Greater variations in the asymmetry about
the harmonic peak were seen for the case of perform-
ing the analysis in the wavenumber domain. How-
ever, a detailed analysis of changes to the higher
order terms will require further theoretical work,
and it is likely to be of less use, owing to the expected
limited accuracy and stability in calculating them
compared to the lower order terms.

5. Conclusion

Fourier analysis was used to measure the wave-
length shift and chirp of the interference fringes ofFig. 9. Variation of the parameter β0 with respect to pressure.

Fig. 10. Variation of the parameter k2;β with respect to pressure.
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a Sagnac interferometer incorporating a polariza-
tion-maintaining PCF. A theoretical formulation
for determining the wavelength shift and the linear
and quadratic wavelength dependence of the phase
was developed. Effective sensitivities were measured
as 9:45 nm=MPa, −55:7 cm−1=MPa, and 1:54 ×
10−5 nm−2=MPa for the analysis of wavelength shifts,
wavenumber shifts, and chirp in the wavelength
spectrum, respectively. Nonlinearity of the response
was seen when an analysis of chirp in the wavenum-
ber-domain-based measurements was performed.
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grant 60629401, in part by the Hong Kong Polytech-
nic University Grants Committee Matching Grant
under project J-BB9J, and in part under project
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