35,039 research outputs found

    Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications

    Get PDF
    Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials

    Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers

    Get PDF
    The effect of two different dopants, P and Ga, in spin-on glass (SOG) films on impurity-free vacancy disordering (IFVD) in GaAs/AlGaAs quantum-well structures has been investigated. It is observed that by varying the annealing and baking temperatures, P-doped SOG films created a similar amount of intermixing as the undoped SOG films. This is different from the results of other studies of P-doped SiO₂ and is ascribed to the low doping concentration of P, indicating that the doping concentration of P in the SiO₂ layer is one of the key parameters that may control intermixing. On the other hand, for all the samples encapsulated with Ga-doped SOG layers, significant suppression of the intermixing was observed, making them very promising candidates with which to achieve the selective-area defect engineering that is required for any successful application of IFVD.One of the authors (H.H.T.) acknowledges a fellowship awarded to him by the Australian Research Council

    Simulating Gyrokinetic Microinstabilities in Stellarator Geometry with GS2

    Full text link
    The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.Comment: Submitted to Physics of Plasmas. 9 pages, 14 figure

    Lattice study on πK\pi K scattering with moving wall source

    Full text link
    The s-wave pion-kaon (πK\pi K) scattering lengths at zero momentum are calculated in lattice QCD with sufficiently light u/du/d quarks and strange quark at its physical value by the finite size formula. The light quark masses correspond to mπ=0.3300.466m_\pi = 0.330 - 0.466 GeV. In the "Asqtad" improved staggered fermion formulation, we measure the πK\pi K four-point correlators for both isospin I=1/2I=1/2 and 3/2 channels, and analyze the lattice simulation data at the next-to-leading order in the continuum three-flavor chiral perturbation theory, which enables us a simultaneous extrapolation of πK\pi K scattering lengths at physical point. We adopt a technique with the moving wall sources without gauge fixing to obtain the substantiable accuracy, moreover, for I=1/2I = 1/2 channel, we employ the variational method to isolate the contamination from the excited states. Extrapolating to the physical point yields the scattering lengths as mπa3/2=0.0505(19)m_\pi a_{3/2} = -0.0505(19) and mπa1/2=0.1827(37)m_\pi a_{1/2} = 0.1827(37) for I=3/2I=3/2 and 1/2 channels, respectively. Our simulation results for πK\pi K scattering lengths are in agreement with the experimental reports and theoretical predictions, and can be comparable with other lattice simulations. These simulations are carried out with MILC Nf=2+1N_f = 2+1 flavor gauge configurations at lattice spacing a0.15a \approx 0.15 fm.Comment: Use variational method to analyze I=1/2 channel for isolating the contaminatio

    Effects of the Lattice Discreteness on a Soliton in the Su-Schrieffer-Heeger Model

    Full text link
    In this paper we analytically study the effects of the lattice discreteness on the electron band in the SSH model. We propose a modified version of the TLM model which is derived from the SSH model using a continuum approximation. When a soliton is induced in the electron-lattice system, the electron scattering states both at the bottom of the valence band and the top of the conduction band are attracted to the soliton. This attractive force induces weakly localized electronic states at the band edges. Using the modified version of the TLM model, we have succeeded in obtaining analytical solutions of the weakly localized states and the extended states near the bottom of the valence band and the top of the conduction band. This band structure does not modify the order parameters. Our result coincides well with numerical simulation works.Comment: to be appear in J.Phys.Soc.Jpn. Figures should be requested to the author. They will be sent by the conventional airmai

    Nonlinearity-assisted quantum tunneling in a matter-wave interferometer

    Full text link
    We investigate the {\em nonlinearity-assisted quantum tunneling} and formation of nonlinear collective excitations in a matter-wave interferometer, which is realised by the adiabatic transformation of a double-well potential into a single-well harmonic trap. In contrast to the linear quantum tunneling induced by the crossing (or avoided crossing) of neighbouring energy levels, the quantum tunneling between different nonlinear eigenstates is assisted by the nonlinear mean-field interaction. When the barrier between the wells decreases, the mean-field interaction aids quantum tunneling between the ground and excited nonlinear eigenstates. The resulting {\em non-adiabatic evolution} depends on the input states. The tunneling process leads to the generation of dark solitons, and the number of the generated dark solitons is highly sensitive to the matter-wave nonlinearity. The results of the numerical simulations of the matter-wave dynamics are successfully interpreted with a coupled-mode theory for multiple nonlinear eigenstates.Comment: 11 pages, 6 figures, accept for publication in J. Phys.

    Ground state of a polydisperse electrorheological solid: Beyond the dipole approximation

    Full text link
    The ground state of an electrorheological (ER) fluid has been studied based on our recently proposed dipole-induced dipole (DID) model. We obtained an analytic expression of the interaction between chains of particles which are of the same or different dielectric constants. The effects of dielectric constants on the structure formation in monodisperse and polydisperse electrorheological fluids are studied in a wide range of dielectric contrasts between the particles and the base fluid. Our results showed that the established body-centered tetragonal ground state in monodisperse ER fluids may become unstable due to a polydispersity in the particle dielectric constants. While our results agree with that of the fully multipole theory, the DID model is much simpler, which offers a basis for computer simulations in polydisperse ER fluids.Comment: Accepted for publications by Phys. Rev.

    Stability of Unconventional Superconductivity on Surfaces of Topological Insulators

    Full text link
    Superconductivity on the surface of topological insulators is known to be anisotropic and unconventional in that the symmetry is the mixture of s-wave and nodeless p-wave component. In contrast to Anderson's theorem for the insensitivity of the s-wave superconducting critical temperature to the nonmagnetic (time-reversal symmetric (TRS)) impurities, anisotropic superconductors including nodeless p-wave one are in general fragile even with small concentration of the TRS impurities. By employing the Abrikosov-Gor'kov theory, we clarify that this type of unconventional superconductivity emergent on the surface state of the strong topological insulators robustly survive against TRS impurities
    corecore