5,376 research outputs found

    Topological Strings and Quantum Spectral Problems

    Get PDF
    We consider certain quantum spectral problems appearing in the study of local Calabi-Yau geometries. The quantum spectrum can be computed by the Bohr-Sommerfeld quantization condition for a period integral. For the case of small Planck constant, the periods are computed perturbatively by deformation of the Omega background parameters in the Nekrasov-Shatashvili limit. We compare the calculations with the results from the standard perturbation theory for the quantum Hamiltonian. There have been proposals in the literature for the non-perturbative contributions based on singularity cancellation with the perturbative contributions. We compute the quantum spectrum numerically with some high precisions for many cases of Planck constant. We find that there are also some higher order non-singular non-perturbative contributions, which are not captured by the singularity cancellation mechanism. We fix the first few orders formulas of such corrections for some well known local Calabi-Yau models.Comment: 47 pages, 3 figures. v2: journal version, typos correcte

    Power properties if invariant tests for spatial autocorrelation in linear regression

    Get PDF
    This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is include

    Scaling behavior of online human activity

    Full text link
    The rapid development of Internet technology enables human explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e. traces), we can get insights about dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, book, and movie rating, are comprehensively investigated by using detrended fluctuation analysis technique and multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three type medias show the similar scaling property with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based their activities (i.e., rating per unit time), we find that the scaling exponents of interevent time series in three groups are different. Hence, these results suggest the stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary from three groups. To explain the differences of the collective behaviors restricted to three groups, we study the dynamic behavior of human activity at individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associating with long-range anticorrelations. By comparing with the interevent time distributions of four representative users, we can find that the bimodal distributions may bring the extraordinary scaling behaviors. These results of analyzing the online human activity in the e-commerce may not only provide insights to understand its dynamic behaviors but also be applied to acquire the potential economic interest

    High performance shape memory polyurethane synthesized with high molecular weight polyol as the soft segment

    Get PDF
    Shape memory polyurethanes (SMPUs) are typically synthesized using polyols of low molecular weight (MW~2,000 g/mol) as it is believed that the high density of cross-links in these low molecular weight polyols are essential for high mechanical strength and good shape memory effect. In this study, polyethylene glycol (PEG-6000) with MW ~6000 g/mol as the soft segment and diisocyanate as the hard segment were used to synthesize SMPUs, and the results were compared with the SMPUs with polycaprolactone PCL-2000. The study revealed that although the PEG-6000-based SMPUs have lower maximum elongations at break (425%) and recovery stresses than those of PCL-based SMPUs, they have much better recovery ratios (up to 98%) and shape fixity (up to 95%), hence better shape memory effect. Furthermore, PEG-based SMPUs showed a much shorter actuation time of < 10 s for up to 90% shape recovery compared to typical actuation times of tens of seconds to a few minutes for common SMPUs, demonstrated their great potential for applications in microsystems and other engineering components

    TiNi-based thin films for MEMS applications

    Get PDF
    In this paper, some critical issues and problems in the development of TiNi thin films were discussed, including preparation and characterization considerations, residual stress and adhesion, frequency improvement, fatigue and stability, as well as functionally graded or composite thin film design. Different types of MEMS applications were reviewed and the prospects for future advances in fabrication process and device development were discussed.Singapore-MIT Alliance (SMA

    Genetic diversity and character association analysis based on pomological traits in olive (Olea europaea L.)

    Get PDF
    Thirteen exotic genotypes of olive (Olea europaea L.) were studied for the genetic variability, correlation and path coefficient analysis for fruit quality, yield and yield contributing traits at experimental farm of ICAR-CITH, Srinagar during 2009-2013. Maximum variability was recorded for fruit yield and oil content, however, low differ-ences between the phenotypic and genotypic coefficients of variations indicated low environmental influences on the expression of these characters. High heritability coupled with high genetic advance was obtained with fruit yield per plant, acidity, fruit pulp weight, fruit weight and stone weight. Fruit weight (r=0.329), stone weight (r=0.405) and oil content (r=0.841) were the most important traits, which possessed significant positive association with fruit yield per plant. Path coefficient analysis revealed that among the different yield contributing characters oil content (0.875), fruit weight (0.797) followed by acidity (0.501), peroxides value ( 0.199) and fruit length (0.054) influenced fruit yield per plant directly. The direct effects of these characters on fruit yield were found positive and considerably very high.The selection based on fruit weight, stone weight oil content and yield per plant will be effective for enhancing the fruit and oil yieldand making future olive breeding strategies

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.
    corecore