42 research outputs found

    Local Probes for Quantum Hall Ferroelectrics and Nematics

    Full text link
    Two-dimensional multi-valley electronic systems in which the dispersion of individual pockets has low symmetry give rise to quantum Hall ferroelectric and nematic states in the presence of strong quantising magnetic fields. We investigate local signatures of these states arising near impurities that can be probed via Scanning Tunnelling Microscopy (STM) spectroscopy. For quantum Hall ferroelectrics, we demonstrate a direct relation between the dipole moment measured at impurity bound states and the ideal bulk dipole moment obtained from the modern theory of polarisation. We also study the many-body problem with a single impurity via exact diagonalization and find that near strong impurities non-trivial excitonic state can form with specific features that can be easily identified via STM spectroscopy.Comment: Main: 5 pages, 4 figures; Supplement: 9 pages, 4 figures; published versio

    Mask-guided Style Transfer Network for Purifying Real Images

    Full text link
    Recently, the progress of learning-by-synthesis has proposed a training model for synthetic images, which can effectively reduce the cost of human and material resources. However, due to the different distribution of synthetic images compared with real images, the desired performance cannot be achieved. To solve this problem, the previous method learned a model to improve the realism of the synthetic images. Different from the previous methods, this paper try to purify real image by extracting discriminative and robust features to convert outdoor real images to indoor synthetic images. In this paper, we first introduce the segmentation masks to construct RGB-mask pairs as inputs, then we design a mask-guided style transfer network to learn style features separately from the attention and bkgd(background) regions and learn content features from full and attention region. Moreover, we propose a novel region-level task-guided loss to restrain the features learnt from style and content. Experiments were performed using mixed studies (qualitative and quantitative) methods to demonstrate the possibility of purifying real images in complex directions. We evaluate the proposed method on various public datasets, including LPW, COCO and MPIIGaze. Experimental results show that the proposed method is effective and achieves the state-of-the-art results.Comment: arXiv admin note: substantial text overlap with arXiv:1903.0582

    High-entropy energy materials: Challenges and new opportunities

    Get PDF
    The essential demand for functional materials enabling the realization of new energy technologies has triggered tremendous efforts in scientific and industrial research in recent years. Recently, high-entropy materials, with their unique structural characteristics, tailorable chemical composition and correspondingly tunable functional properties, have drawn increasing interest in the fields of environmental science and renewable energy technology. Herein, we provide a comprehensive review of this new class of materials in the energy field. We begin with discussions on the latest reports on the applications of high-entropy materials, including alloys, oxides and other entropy-stabilized compounds and composites, in various energy storage and conversion systems. In addition, we describe effective strategies for rationally designing high-entropy materials from computational techniques and experimental aspects. Based on this overview, we subsequently present the fundamental insights and give a summary of their potential advantages and remaining challenges, which will ideally provide researchers with some general guides and principles for the investigation and development of advanced high-entropy materials

    Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence

    Get PDF
    Research data in support of the publication "Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence". We have included the original data (tab-separated text files) as plotted for the quantum wells, measured by spatially- and time-resolved cathodoluminescence

    High‐Resolution Capillary Printing of Eutectic Gallium Alloys for Printed Electronics

    Get PDF
    A versatile liquid metal (LM) printing process enabling the fabrication of various fully printed devices such as intra- and interconnect wires, resistors, diodes, transistors, and basic circuit elements such as inverters which are process compatible with other digital printing and thin film structuring methods for integration is presented. For this, a glass capillary-based direct-write method for printing LMs such as eutectic gallium alloys, exploring the potential for fully printed LM-enabled devices is demonstrated. Examples for successful device fabrication include resistors, p–n diodes, and field effect transistors. The device functionality and easiness of one integrated fabrication flow shows that the potential of LM printing is far exceeding the use of interconnecting conventional electronic devices in printed electronics

    The microstructure of non-polar a-plane (11 2 0) InGaN quantum wells

    Get PDF
    Atom probe tomography and quantitative scanning transmission electron microscopy are used to assess the composition of non-polar a-plane (11-20) InGaN quantum wells for applications in optoelectronics. The average quantum well composition measured by atom probe tomography and quantitative scanning transmission electron microscopy quantitatively agrees with measurements by X-ray diffraction. Atom probe tomography is further applied to study the distribution of indium atoms in non-polar a-plane (11-20) InGaN quantum wells. An inhomogeneous indium distribution is observed by frequency distribution analysis of the atom probe tomography measurements. The optical properties of non-polar (11-20) InGaN quantum wells with indium compositions varying from 7.9% to 20.6% are studied. In contrast to non-polar m-plane (1-100) InGaN quantum wells, the non-polar a-plane (11-20) InGaN quantum wells emit at longer emission wavelengths at the equivalent indium composition. The non-polar a-plane (11-20) quantum wells also show broader spectral linewidths. The longer emission wavelengths and broader spectral linewidths may be related to the observed inhomogeneous indium distribution.This work was carried out with the support of the United Kingdom Engineering and Physical Sciences Research Council under Grants Nos. EP\J001627\1, EP/I012591/1, and EP\J003603\1. The European Research Council has also provided financial support under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279361 (MACONS). J. Etheridge and S. D. Findlay acknowledge funding from the Australian Research Council (ARC) (Project Nos. DP110104734 and DP110101570, respectively). The Titan3 80-300 TEM/STEM at the Monash Centre for Electron Microscopy was supported by the ARC Grant No. LE0454166.This is the final version of the article. It first appeared from the American Institute of Physics via http://dx.doi.org/10.1063/1.494829
    corecore