30 research outputs found

    The FPR2-induced rise in cytosolic calcium in human neutrophils relies on an emptying of intracellular calcium stores and is inhibited by a gelsolin-derived PIP2-binding peptide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular basis for neutrophil recognition of chemotactic peptides is their binding to specific G-protein-coupled cell surface receptors (GPCRs). Human neutrophils express two pattern recognition GPCRs, FPR1 and FPR2, which belong to the family of formyl peptide receptors. The high degree of homology between these two receptors suggests that they share many functional and signal transduction properties, although they exhibit some differences with respect to signaling. The aims of this study were to determine whether FPR2 triggers a unique signal that allows direct influx of extracellular calcium without the emptying of intracellular calcium stores, and whether the gelsolin-derived PIP<sub>2</sub>-binding peptide, PBP10, selectively inhibits FPR2-mediated transient rise in intracellular Ca<sup>2+</sup>.</p> <p>Results</p> <p>The transient rise in intracellular Ca<sup>2+ </sup>induced by agonists for FPR1 or FPR2 in human neutrophils occurred also in the presence of a chelator of Ca<sup>2+ </sup>(EGTA). PBP10 inhibited not only FPR2-induced oxidase activity, but also the transient rise in intracellular Ca<sup>2+</sup>.</p> <p>Conclusions</p> <p>Ca<sup>2+ </sup>signaling mediated <it>via </it>FPR2 follows the same route as FPR1, which involves initial emptying of the intracellular stores. PBP10 inhibits selectively the signals generated by FPR2, both with respect to NADPH-oxidase activity and the transient rise in intracellular Ca<sup>2+ </sup>induced by agonist exposure.</p

    Chemoattractant receptor signaling and neutrophil acctivation. Involvement of the cytoskeleton

    No full text
    Neutrophil granulocytes play a vital role in the host surveillance system and form the first line of defense against microbial infections. The migration of neutrophils to an infected/inflamed tissue is guided by chemoattractants released either from intruding microbes or from activated/damaged host cells. Chemoattractants are recognized by neutrophils through chemoattractant receptors that belong to a large family of pertussis toxin-sensitive, G-protein coupled receptors (GPCRs). Ligand occupation of GPCRs generates signals that activate also the bactericidal systems in neutrophils such as secretion and production of superoxide anion. Being as the principal structure of the neutrophil peripheral cytoplasm, the cytoskeleton serves as the motor for all mechanical responses induced by chemoattractants including adhesion, locomotion, cell spreading and secretion. Inappropriate receptor activation and/or deactivation events may impair host defense and cause tissue damage. Thus, neutrophil GPCR activation is under tight control and regulated by various mechanisms at multiple levels. One such mechanism is the cytoskeleton-directed process that desensitizes the activated receptors and shuts the signaling off. Accumulating experimental evidences in neutrophil research have outlined crucial new implications for the role of actin cytoskeleton in neutrophil GPCR activation. The physical segregation of the activated receptors from the signaling G-proteins and coupling to the cytoskeleton forms one basis for GPCR desensitization. Desensitized GPCRs can be reactivated by subsequent addition of a cytoskeleton-disrupting agent, resulting in superoxide production. Apart from agonist-dependent neutrophil GPCR activation, agonist-independent GPCR activation/reactivation has also been observed. Chemoattractant mediated intracellular Ca2+ transients have long been considered essential for neutrophil activation, however, the reactivation of GPCRs occurs without any intracellular Ca2+ transient. Despite the large structural similarities and similar cellular responses they induced, some fundamental differences exist between different GPCRs with respect to receptor desensitization/reactivation and intracellular signaling. Even the two very closely related formyl peptide receptors, FPR and FPRL1, use distinct signaling pathways to activate neutrophils. The pro-inflammatory effect mediated through FPR may possibly be used as a new approach to antimicrobial chemotherapy, as suggested by the fact that certain antibiotics (bacterial peptide deformylase inhibitors) promote the bacterial release of FPR-activating peptides

    Subinhibitory Concentrations of the Deformylase Inhibitor Actinonin Increase Bacterial Release of Neutrophil-Activating Peptides: a New Approach to Antimicrobial Chemotherapy

    No full text
    Bacterial protein synthesis starts with a formylated methionine residue, and this residue is sequentially cleaved away by a unique peptide deformylase (PDF) and a methionine aminopeptidase to generate mature proteins. The formylation-deformylation of proteins is a unique hallmark of bacterial metabolism and has recently become an attractive target for the development of antimicrobial agents. The innate immune system uses the formylation of bacterial proteins as a target, and professional phagocytes, e.g., neutrophils, express specific receptors for bacterium-derived formylated peptides. Activation of formyl peptide receptors (FPR) mediates neutrophil migration and the release of oxygen radicals and other antimicrobial substances from these cells. We hypothesize that the use of a PDF inhibitor would increase the production of proinflammatory peptides from the bacteria and thus trigger a more pronounced innate immune response. We tested this hypothesis by exposing Escherichia coli to subinhibitory doses of the PDF inhibitor actinonin and show that actinonin indeed increases the production and secretion of neutrophil-activating peptides that activate human neutrophils through FPR. These findings could be potentially used as a new approach to antibacterial chemotherapy

    Interleukin-8-Derived Peptide Has Antibacterial Activity

    No full text
    Chemokines are inflammatory mediators with effects on diverse processes associated with the immune response. Some of the proteins belonging to the CXC chemokine subfamily, one of four groups in the family, possess inherent antibacterial activity against a wide range of bacteria. The CXC chemokine interleukin-8 (IL-8) has not been ascribed any direct antibacterial activity, but the fact that several of the amino acids in the carboxy-terminal part of the protein are identical or similar to those in a bactericidal cecropin-like peptide [Hp(2-20)] from Helicobacter pylori suggests that processing of the cytokine might generate peptide fragments with antibacterial properties. Synthetic peptides representing the carboxy-terminal part of IL-8 were investigated for antibacterial activities. These fragments possessed an antibacterial activity absent in the full-length IL-8. The antibacterial effects were reduced at increasing salt concentrations whereas the activity was increased when the pH was lowered. The IL-8-derived peptide shared structural similarity with and was also functionally additive to the Hp(2-20) peptide. The IL-8-derived peptide lacked the proinflammatory effects of the full-length protein. We also showed that acid hydrolysis of IL-8 generated a major peptide fragment corresponding to the antibacterial carboxyl terminus of the protein. The results presented are of special interest when put in the context of the suggested importance of antimicrobial peptides for microbial colonization of the gastric mucosa

    The peptide Trp-Lys-Tyr-Met-Val-D-Met activates neutrophils through the formyl peptide receptor only when signaling through the formylpeptide receptor like 1 is blocked. A receptor switch with implications for signal transduction studies with inhibitors and receptor antagonists.

    No full text
    International audienceNeutrophils express the G protein-coupled N-formyl peptide receptor (FPR) and its homologue FPRL1. The hexapeptide Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm) activates HL-60 cells transfected either with FPRL1 or with FPR. The signaling through the stably expressed receptors was inhibited by specific receptor antagonists, cyclosporine H and WRWWWW (WRW4) for FPR and FPRL1, respectively. The neutrophil release of superoxide was used to determine receptor preference, when these cells were triggered with WKYMVm. The response was not affected by the FPR specific antagonist suggesting that no signals are transduced through this receptor. The response was only partly inhibited by WRW4, but this antagonist induced a receptor switch, perceptible as a change in sensitivity to the FPR antagonist. The activity remaining in the presence of WRW4 was inhibited by cyclosporine H. A cell permeable peptide (PBP10) corresponding to the phosphatidyl-inositol-bisphosphate binding region of gelsolin, inhibited the FPRL1-, but not the FPR-induced cellular response and induced the same type of receptor switch. We show that an agonist that has the potential to bind and activate neutrophils through FPRL1 as well as through FPR, uses the latter receptor and its signaling route, only when the activating signal generated through FPRL1 is blocked. The receptor switch is achieved when signaling through FPRL1 is inhibited both by a receptor antagonist, and by an inhibitor operating from the inside of the plasma membrane. The phenomenon described is of general importance for proper interpretation of results generated through the use of different "silencing technologies" in receptor operated signaling transduction research

    Neutrophil NADPH-oxidase activation by an annexin AI peptide is transduced by the formyl peptide receptor (FPR), whereas an inhibitory signal is generated independently of the FPR family receptors.

    No full text
    International audienceTruncation of the N-terminal part of the calcium-regulated and phospholipid-binding protein annexin AI has been shown to change the functional properties of the protein and to generate immunoregulatory peptides. Proinflammatory as well as anti-inflammatory signals are triggered by these peptides, and the two formyl peptide receptor (FPR) family members expressed in neutrophils, FPR and FPR-like 1 (FPRL1), have been suggested to transduce these signals. We now report that an annexin AI peptide (Ac9-25) activates, as well as inhibits, the neutrophil release of superoxide anions. Results obtained from experiments with receptor antagonists/inhibitors, desensitized cells, and transfected cells reveal that the Ac9-25 peptide activates the neutrophil reduced nicotinamide adenine dinucleotide phosphate oxidase through FPR but not through FPRL1. The Ac9-25 peptide also inhibits the oxidase activity in neutrophils triggered, not only by the FPR-specific agonist N-formyl-Met-Leu-Phe but also by several other agonists operating through different G protein-coupled receptors. Our data show that the two signals generated by the Ac9-25 peptide are transmitted through different receptors, the inhibitory signal being transduced by a not-yet identified receptor distinct from FPR and FPRL1

    Maternal Daidzein Supplementation during Lactation Promotes Growth Performance, Immunity, and Intestinal Health in Neonatal Rabbits

    No full text
    The main purpose of the present research was to evaluate the effect of varying levels of DA inclusion in maternal diet, in the form of powder, on the born-weaning growth performance (days 1–30) and intestinal health of neonatal rabbits. A total of 152 delivered maternal does (3.94 ± 0.05 kg) were allocated into four groups, with thirty-eight replicates of one doe each, and fed with a control diet (CON) supplemented with different levels of powdered DA (85 mg/kg (DA85), 170 mg/kg (DA170), and 340 mg/kg (DA340)) during lactation. The results show that dietary DA increased individual body weight at days 21 and 30 (p = 0.03 and p p p = 0.05) and glutathione peroxidase (GSH-Px) (p = 0.01) concentrations of maternal rabbits were increased in all maternal DA-supplemented groups and showed a linear and quadratic effect (p p p p p = 0.01) in neonatal rabbits were increased in all dietary DA groups, and both showed a linear and quadratic effect (p p = 0.03) and catalase (CAT) (p = 0.04) concentrations were affected by DA supplements, but linear and quadratic effects were only observed in the catalase (CAT) of neonatal rabbits (p p p = 0.01) and the ratio of villus height to crypt depth (p = 0.02 and p = 0.01) in neonatal rabbits were elevated in all DA-supplemented treatments, while a linear and quadratic effect was observed in jejunum, but a quadratic effect was observed in duodenum (p p p p = 0.04), zonula occludens-1 (ZO-1) (p p = 0.03), and solute carrier family 5 member 9 (SCL5A9) (p p p = 0.01, p = 0.04, and p p = 0.04, p = 0.04, and p = 0.03) epithelium were decreased in the DA170 and DA340 groups (p p < 0.05). In summary, as a functional additive, maternal DA supplementation with 170 and 340 mg/kg DA during lactation can promote the growth of neonatal rabbits, which is related to improved antioxidative capacity and immunity, as well as improved intestinal health in neonatal rabbits

    The two neutrophil members of the formylpeptide receptor family activate the NADPH-oxidase through signals that differ in sensitivity to a gelsolin derived phosphoinositide-binding peptide

    No full text
    Abstract Background The formylpeptide receptor family members FPR and FPRL1, expressed in myeloid phagocytes, belong to the G-protein coupled seven transmembrane receptor family (GPCRs). They share a high degree of sequence similarity, particularly in the cytoplasmic domains involved in intracellular signaling. The established model of cell activation through GPCRs states that the receptors isomerize from an inactive to an active state upon ligand binding, and this receptor transformation subsequently activates the signal transducing G-protein. Accordingly, the activation of human neutrophil FPR and FPRL1 induces identical, pertussis toxin-sensitive functional responses and a transient increase in intracellular calcium is followed by a secretory response leading to mobilization of receptors from intracellular stores, as well as a release of reactive oxygen metabolites. Results We report that a cell permeable ten amino acid peptide (PBP10) derived from the phosphatidylinositol 4,5-bisphosphate (PIP2) binding region of gelsolin (an uncapper of actin filaments) blocks granule mobilization as well as secretion of oxygen radicals. The inhibitory effect of PBP10 is, however, receptor specific and affects the FPRL1-, but not the FPR-, induced cellular response. The transient rise in intracellular calcium induced by the active receptors is not affected by PBP10, suggesting that the blockage occurs in a parallel, novel signaling pathway used by FPRL1 to induce oxygen radical production and secretion. Also the FPR can activate neutrophils through a PBP10-sensitive signaling pathway, but this signal is normally blocked by the cytoskeleton. Conclusions This study demonstrates that the two very closely related chemoattractant receptors, FPR and FPRL1, use distinct signaling pathways in activation of human neutrophils. The PIP2-binding peptide PBP10 selectively inhibits FPRL1-mediated superoxide production and granule mobilization. Furthermore, the activity of this novel PBP10 sensitive pathway in neutrophils is modulated by the actin cytoskeleton network.</p

    A monocyte-specific peptide from herpes simplex virus type 2 glycoprotein G activates the NADPH-oxidase but not chemotaxis through a G-protein-coupled receptor distinct from the members of the formyl peptide receptor family.

    No full text
    We have recently identified a peptide derived from the secreted portion of the HSV-2 glycoprotein G, gG-2p20, to be proinflammatory. Based on its ability to activate neutrophils and monocytes via the formyl peptide receptor (FPR) to produce reactive oxygen species (ROS) that down-regulate NK cell function, we suggested it to be of importance in HSV-2 pathogenesis. We now describe the effects of an overlapping peptide, gG-2p19, derived from the same HSV-2 protein. Also, this peptide activated the ROS-generating NADPH-oxidase, however, only in monocytes and not in neutrophils. Surprisingly, gG-2p19 did not induce a chemotactic response in the affected monocytes despite using a pertussis toxin-sensitive, supposedly G-protein-coupled receptor. The specificity for monocytes suggested that FPR and its homologue FPR like-1 (FPRL1) did not function as receptors for gG-2p19, and this was also experimentally confirmed. Surprisingly, the monocyte-specific FPR homologue FPRL2 was not involved either, and the responsible receptor thus remains unknown so far. However, the receptor shares some basic signaling properties with FPRL1 in that the gG-2p19-induced response was inhibited by PBP10, a peptide that has earlier been shown to selectively inhibit FPRL1-triggered responses. We conclude that secretion and subsequent degradation of the HSV-2 glycoprotein G can generate several peptides that activate phagocytes through different receptors, and with different cellular specificities, to generate ROS with immunomodulatory properties

    Characterization of Biochar Derived from Pineapple Peel Waste and Its Application for Sorption of Oxytetracycline from Aqueous Solution

    Get PDF
    Physicochemical characteristics of biochar and its sorption potential for oxytetracycline (OTC) were investigated. Biochars from pineapple peel waste were produced via pyrolysis under oxygen-depleted conditions at 350 °C (BL350), 500 °C (BL500), and 650 °C (BL650), as well as the characteristics and polycyclic aromatic hydrocarbons contents of the samples were compared. The sorption kinetics of OTC onto the biochars was completed in three stages, i.e., a fast stage, a slow stage, and an equilibrium stage after 24 h. The kinetics data were perfectly fitted by the pseudo-second-order model with high correlation coefficients (R2 > 0.999). All of the sorption isotherms were nonlinear and well described by the Langmuir model. The Langmuir maximum sorption capacity (qmax) increased in the order of BL650 > BL500 > BL350. The thermodynamic parameters revealed that the sorption of OTC onto the biochars was spontaneous and endothermic. Fourier transform infrared spectroscopy (FTIR) of the biochars before and after sorption of OTC confirmed that the H-bonding interaction was the dominant sorption mechanism. The results demonstrated that biochars obtained from inexpensive and renewable materials could be utilized as a highly effective and environmentally friendly adsorbent for removing organic contaminants from wastewater
    corecore