12 research outputs found

    Computational study of the thermal conductivity in defective carbon nanostructures

    Full text link
    We use non-equilibrium molecular dynamics simulations to study the adverse role of defects including isotopic impurities on the thermal conductivity of carbon nanotubes, graphene and graphene nanoribbons. We find that even in structurally perfect nanotubes and graphene, isotopic impurities reduce thermal conductivity by up to one half by decreasing the phonon mean free path. An even larger thermal conductivity reduction, with the same physical origin, occurs in presence of structural defects including vacancies and edges in narrow graphene nanoribbons. Our calculations reconcile results of former studies, which differed by up to an order of magnitude, by identifying limitations of various computational approaches

    Atomistic potential for graphene and other sp2^2 carbon systems

    Full text link
    We introduce a torsional force field for sp2^2 carbon to augment an in-plane atomistic potential of a previous work (Kalosakas et al, J. Appl. Phys. {\bf 113}, 134307 (2013)) so that it is applicable to out-of-plane deformations of graphene and related carbon materials. The introduced force field is fit to reproduce DFT calculation data of appropriately chosen structures. The aim is to create a force field that is as simple as possible so it can be efficient for large scale atomistic simulations of various sp2^2 carbon structures without significant loss of accuracy. We show that the complete proposed potential reproduces characteristic properties of fullerenes and carbon nanotubes. In addition, it reproduces very accurately the out-of-plane ZA and ZO modes of graphene's phonon dispersion as well as all phonons with frequencies up to 1000~cm−1^{-1}.Comment: 9 pages, 6 figure

    Atomistic potential for graphene and other sp2 carbon systems

    No full text
    We introduce a torsional force field for sp2 carbon to augment an in-plane atomistic potential of a previous work (Kalosakas et al, J. Appl. Phys. 113, 134307 (2013)) so that it is applicable to out-of-plane deformations of graphene and related carbon materials. The introduced force field is fit to reproduce DFT calculation data of appropriately chosen structures. The aim is to create a force field that is as simple as possible so it can be efficient for large scale atomistic simulations of various sp2 carbon structures without significant loss of accuracy. We show that the complete proposed potential reproduces characteristic properties of fullerenes and carbon nanotubes. In addition, it reproduces very accurately the out-of-plane ZA and ZO modes of graphene’s phonon dispersion as well as all phonons with frequencies up to 1000 cm−1.</div
    corecore