194 research outputs found

    The Computation of Surface Lightness in Simple and Complex Scenes

    Get PDF
    The present thesis examined how reflectance properties and the complexity of surface mesostructure (small-scale surface relief) influence perceived lightness in centresurround displays. Chapters 2 and 3 evaluated the role of surface relief, gloss, and interreflections on lightness constancy, which was examined across changes in background albedo and illumination level. For surfaces with visible mesostructure (“rocky” surfaces), lightness constancy across changes in background albedo was better for targets embedded in glossy versus matte surfaces. However, this improved lightness constancy for gloss was not observed when illumination varied. Control experiments compared the matte and glossy rocky surrounds to two control displays, which matched either pixel histograms or a phase-scrambled power spectrum. Lightness constancy was improved for rocky glossy displays over the histogram-matched displays, but not compared to phase-scrambled variants of these images with equated power spectrums. The results were similar for surfaces rendered with 1, 2, 3 and 4 interreflections. These results suggest that lightness perception in complex centre-surround displays can be explained by the distribution of contrast across space and scale, independently of explicit information about surface shading or specularity. The results for surfaces without surface relief (“homogeneous” surfaces) differed qualitatively to rocky surfaces, exhibiting abrupt steps in perceived lightness at points at which the targets transitioned from being increments to decrements. Chapter 4 examined whether homogeneous displays evoke more complex mid-level representations similar to conditions of transparency. Matching target lightness in a homogeneous display to that in a textured or rocky display required varying both lightness and transmittance of the test patch on the textured display to obtain the most satisfactory matches. However, transmittance was only varied to match the contrast of targets against homogeneous surrounds, and not to explicitly match the amount of transparency perceived in the displays. The results suggest perceived target-surround edge contrast differs between homogeneous and textured displays. Varying the mid-level property of transparency in textured displays provides a natural means for equating both target lightness and the unique appearance of the edge contrast in homogeneous displays

    Nuchal translucency

    No full text

    Mosaic trisomy 8 as a cause of velopharyngeal insufficiency.

    No full text
    Item does not contain fulltex
    • …
    corecore