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Abstract 

 

The present thesis examined how reflectance properties and the complexity of surface 

mesostructure (small-scale surface relief) influence perceived lightness in centre-

surround displays. Chapters 2 and 3 evaluated the role of surface relief, gloss, and 

interreflections on lightness constancy, which was examined across changes in 

background albedo and illumination level. For surfaces with visible mesostructure 

(“rocky” surfaces), lightness constancy across changes in background albedo was better 

for targets embedded in glossy versus matte surfaces. However, this improved lightness 

constancy for gloss was not observed when illumination varied. Control experiments 

compared the matte and glossy rocky surrounds to two control displays, which matched 

either pixel histograms or a phase-scrambled power spectrum. Lightness constancy was 

improved for rocky glossy displays over the histogram-matched displays, but not 

compared to phase-scrambled variants of these images with equated power spectrums. 

The results were similar for surfaces rendered with 1, 2, 3 and 4 interreflections. These 

results suggest that lightness perception in complex centre-surround displays can be 

explained by the distribution of contrast across space and scale, independently of 

explicit information about surface shading or specularity. The results for surfaces 

without surface relief (“homogeneous” surfaces) differed qualitatively to rocky surfaces, 

exhibiting abrupt steps in perceived lightness at points at which the targets transitioned 

from being increments to decrements. Chapter 4 examined whether homogeneous 

displays evoke more complex mid-level representations similar to conditions of 

transparency. Matching target lightness in a homogeneous display to that in a textured 

or rocky display required varying both lightness and transmittance of the test patch on 

the textured display to obtain the most satisfactory matches. However, transmittance 

was only varied to match the contrast of targets against homogeneous surrounds, and 

not to explicitly match the amount of transparency perceived in the displays. The results 

suggest perceived target-surround edge contrast differs between homogeneous and 

textured displays. Varying the mid-level property of transparency in textured displays 

provides a natural means for equating both target lightness and the unique appearance 

of the edge contrast in homogeneous displays. 
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Chapter 1. Determining how the Visual System computes 

Surface Lightness in Complex Scenes 

 

When we look at a scene, the image projected onto the retina is perceptually 

parsed into different causal sources. We get distinct impressions of object shape, 

illumination, and surface reflectance properties (lightness, colour, gloss, and 

transparency). The idea that our visual experience corresponds to the physical 

properties of an object in the world (distal stimulus) rather than retinal stimulation 

(proximal stimulus) can be traced back to Helmholtz (1866/1962). Helmholtz 

recognised that a white piece of paper placed in shadow still looks white, and can be 

distinguished from a black piece of paper in sunlight that projects the same luminance 

on the retina (local retinal stimulation is the same). In this example the two papers have 

identical luminance, but the perception of surface lightness (how light or dark the 

pigment is perceived) correlates with the different physical albedos of the papers (the 

proportion of light reflected diffusely, also called diffuse reflectance). This classic 

example highlights the extensively studied problem of lightness perception: how does 

the visual system recover the lightness of surfaces? The computation of lightness is 

typically regarded as an underconstrained problem because, as demonstrated by 

Helmholtz’s example with paper, any particular luminance could be generated by an 

infinite combination of surface albedos, illuminations, and surface pose. While still 

unresolved, a number of theories have been developed that propose how the visual 

system constrains estimates of surface lightness. 

The earliest theories of lightness perception were put forward by Helmholtz 

(1866/1962) and Hering (1874/1964), whose ideas have underpinned most 

subsequent theories. Helmholtz posited that to constrain estimates of surface lightness, 

the visual system first infers the illumination. Hering argued that to infer the 

illumination, reflectance must be known, suggesting that Helmholtz’s views were 

circular. He claimed that lightness could be determined through peripheral sensory 

mechanisms such as pupil size, adaptation, and reciprocal interactions in the neural 

image. Hering instigated an approach to lightness perception that considers how 

surface lightness is affected by the initial processing of the image. Helmholtz talked 
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about cognitive influences on lightness, but he later inspired an approach to lightness 

perception that explores how feedback from higher visual areas influences the way 

luminance values are processed and mapped to lightness. 

Many subsequent theories of lightness perception have incorporated Helmholtz 

and Hering’s ideas, and have proposed different perceptual mechanisms that might be 

involved in lightness computations. These mechanisms are often referred to as low-, 

mid- and high-level mechanisms. These terms have been used to refer to different levels 

of processing in the visual stream, or more generally how (or whether) scene layout and 

cognitive factors influence perception. In the present thesis, we use the term “low-level” 

to refer to how surface lightness is affected by the transduction of light in the retina and 

early visual processes such as adaptation (Helson, 1943), contrast (Wallach, 1948), and 

lateral interactions of cells at the retina (Cornsweet, 1970; Hurvich & Jameson, 1957; 

Jameson & Hurvich, 1964). We also use the term low-level to refer to theories of 

lightness perception that are primarily concerned with these processes. Although low-

level mechanisms may account for some lightness phenomena (low-level processing 

occurs first by definition), an important question is whether low-level explanations are 

sufficient to account for all lightness phenomena. It is possible that feedback from 

higher visual areas might influence the initial processing of the image. “High-level” 

mechanisms refer to top-down cognitive factors that might influence lightness, and are 

not a focus of the present thesis. “Mid-level” is often defined as an ill-specified region 

between low- and high-level processing (Adelson, 2000). Proposed low-level 

mechanisms often have connections to physiology, but the physiology associated with 

mid-level processes is less clear. We refer to mid-level processes as those that involve 

representations of surfaces, objects, 3D structure, and/or illumination. We also use the 

term mid-level to refer to theories that postulate that lightness computations are 

influenced by scene organisation and the segmentation of surfaces into separate objects 

(e.g. Anderson, 1997; Anderson & Winawer, 2005, 2008; Barrow and Tenenbaum, 

1978), or those that invoke estimates of the illumination (e.g. Boyaci et al., 2006a; 

Snyder et al., 2005). The aim of the present thesis is to tease apart low- and mid-level 

contributions to lightness perception. 

A second aim of this thesis is to explore how lightness is computed for complex 

natural surfaces. Early theories of lightness perception adopted an experimental 
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approach that still persists in modern lightness studies. This approach uses extremely 

simplistic stimuli with only a few luminance values arising from smooth, matte, flat 

surfaces (e.g. Annan & Gilchrist, 2004; Arend & Spehar, 1993a, 1993b; Bressan, 2006; 

Economou et al., 2007; Gilchrist et al., 1999; Gilchrist, 1977, 1979; Kingdom, 2011). 

Examples include the simultaneous contrast display (Figure 1.1A), and displays called 

Mondrians (Land & McCann, 1971), so named because they bear a vague resemblance to 

the work of the painter Piet Mondrian (Figure 1.1B). These simple scenes are vastly 

different than the scenes that people normally encounter, but continue to dominate the 

lightness literature because they allow rigorous experimental control over extraneous 

variables. In such impoverished scenes, disentangling the contributions of lightness and 

illumination is a maximally ill-posed problem (e.g. see Anderson et al., 2014). However, 

most natural surfaces are made of materials that are not characterised by purely diffuse 

reflectance but by a complex reflectance function, and often contain medium-scale 

surface relief (mesostructure). A surface’s microstructure typically generates both 

diffuse and specular reflections whereas a surface’s mesostructure interacts with the 

light field to create shading, shadows, and illuminance flow. These features potentially 

provide the visual system with information not available in simple scenes that may be 

involved in computations of surface lightness. This will be discussed in detail in a later 

section. 

In the following sections we outline the major theories of lightness perception, 

then evaluate the extent to which these theories can be generalised to information-rich 

complex scenes normally encountered by humans. This discussion is followed by 

evidence that the visual system has access to extra image information produced by 

complex scenes that has not been incorporated into any major theory of lightness 

perception. Finally, it will be hypothesised that the visual system uses this extra 

information when computing surface lightness. 
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Figure 1.1. Examples of simple stimuli used in many lightness studies. (A) 

Simultaneous contrast display. The patch on the black background looks lighter than the 

patch on the white background even though they are equiluminant. (B) Example of a 

Mondrian display. 

 

Classes of Lightness Theories 

Theories of lightness perception, most of which are based on Helmholtz’s and 

Hering’s ideas, can be categorised into three broad classes: (1) brightness models, 

which do not distinguish lightness from brightness (perceived luminance) and do not 

require an explicit representation of the illuminant; (2) framework models, which 

divide scenes into frameworks of approximately constant illumination but also do not 

advocate an explicit illuminant representation; and (3) decomposition models, which 

posit that the retinal image is perceptually divided (decomposed) into representations of 

illumination and surface reflectance. Brightness models are mostly based on low-level 

perceptual mechanisms, whereas framework and decomposition models propose that 

mid-level processing of scene layout influences surface lightness.  
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Brightness Models 

Hering, along with Mach (1865), anticipated the discovery of lateral inhibition, 

which entails the opposing centre-surround organisation of the receptive fields of lower 

order visual neurons (i.e. retinal ganglion cells through to cells in the lateral geniculate 

nucleus; Hartline, 1940; Hartline & Graham, 1932; Kuffler, 1953, 1973; Wiesel & Hubel, 

1966). The discovery of lateral inhibition led to the development of low-level theories of 

brightness perception based on contrast (Cornsweet, 1970; Helson, 1943; Hurvich & 

Jameson, 1957; Jameson & Hurvich, 1964; Wallach, 1948). These early contrast theories 

are referred to as brightness models because they are insensitive to the various sources 

of image structure (e.g. reflectance, illumination, and surface pose), and thus model 

brightness perception without dissociating it from lightness. 

 

Early contrast models 

Two influential early contrast theories were put forward by Wallach (1948) and 

Helson (1943, 1964). Wallach (1948) proposed that lightness is determined by the 

luminance ratio between a surface and its adjacent surround. He developed a ratio 

principle from experimental results that showed that a disk surrounded by a brighter 

annulus appears the same shade of grey as another disk surrounded by an annulus that 

has the same luminance ratio, regardless of the absolute luminance values of the 

elements in the display. Helson’s (1943, 1964) adaptation level theory was also based 

on luminance ratios. In this model, the lightness of a patch is determined by the 

luminance ratio between the patch and the average luminance (adaptation level) of a 

collection of surfaces called an “adaptive window”. The average luminance, or 

adaptation level, is weighted toward surfaces closer to the patch. According to Helson, 

the boundaries of the adaptive window should coincide with the boundaries of 

illumination fields. However, neither Helson’s nor Wallach’s models articulated any 

principled way of identifying illumination boundaries. 

Other early contrast theories were based on lateral inhibition, such as Jameson 

and Hurvich’s opponent-process theory (Hurvich & Jameson, 1957; Jameson & Hurvich, 

1964) and Cornsweet’s (1970) theory. These theories asserted that the brightness of a 

target patch is the net result of excitation and inhibition of centre-surround cells in the 
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retina. The perception of brightness was considered to be isomorphic to the response 

profiles of these neurons, i.e. lightness was proposed to directly correspond to the net 

level of excitation and inhibition at a given location. In these models, the level of 

excitation of the target patch is determined by the luminance of the patch itself and the 

level of inhibition is determined by the average luminance of the target’s immediate 

surround. For example, the simultaneous contrast effect in Figure 1.1A would be 

explained in the following way: the excitation of the patch on the white background is 

lowered due to inhibition from the background, while the patch on the black 

background is not affected by such inhibition. This leads to the patch on the black 

background appearing brighter than the one on the white background. 

 

Retinex 

In the early 1970s, Edwin Land described the concept of constancy, where objects 

and surfaces appear to have a consistent colour or lightness regardless of temporal or 

spatial changes in the intensity of the illumination. He formulated retinex theory to 

explain colour and lightness constancy (Land & McCann, 1971). “Retinex” is a 

combination of the words “retina” and “cortex”, which suggests that the brain is also 

involved in the processing of lightness and colour, not just the retina as was suggested 

by early contrast theories. Land recognised that the visual system would have to rely on 

pre-existing assumptions when estimating lightness, which he incorporated into his 

model by assuming that rapid changes in luminance (i.e. edges) correspond to 

reflectance changes, while shallow gradients of luminance correspond to spatial 

variations in illumination. Illumination gradients were assumed to be “removed” by the 

visual system, or at least sensitivity to them was reduced. Although retinex can account 

for illumination that varies gradually across a scene, it is not capable of recognising 

edges that correspond to rapid changes in illumination, e.g. shadow boundaries. 

Land and McCann’s (1971) retinex model proposed that the visual system 

contains three to four retinal-cortical (retinex) systems, each sensitive to a band of 

wavelengths. Each retinex is an independent computation in terms of lightness, which is 

compared to other retinexes to determine colour. Their model was concerned with how 

lightness values are computed within each retinex image. The retinex model treats 
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edges, which are derived at the retina, as an important source of information. The edges 

are subsequently integrated so that the lightness of local and remote areas of the visual 

field can be compared. This is computed by multiplying the luminance ratio at the edge 

of a first and second adjacent area by the luminance ratio at the edge of the second and 

third adjacent area. This multiplication of sequential edge ratios continues to a remote 

target area of interest to be compared to the starting area. Land and McCann claimed 

that the lightness ratio of any two areas in an image can be obtained by this method, 

while taking into account shallow gradients that may be present, caused by variations in 

the illumination. In a later version of the theory (Land, 1986), Land adopted an 

anchoring rule in which the highest relative reflectance computed by retinex is 

perceived as white. 

 

Filling-in 

The retinex model represents a computational approach to lightness, albeit one 

that does not focus on physiological mechanisms that might underlie these 

computations. Filling-in theories have suggested that brightness (or colour) signals 

interact with and propagate from edges, and have proposed a neural basis for this 

process. This proposed brightness propagation can stop at edges (e.g. Grossberg & 

Todorović, 1988), or can be spread and integrated across edges (e.g. Rudd, 2013). 

Grossberg and colleagues (Cohen & Grossberg, 1984; Grossberg, 1983; Grossberg 

& Mingolla, 1987; Grossberg & Todorović, 1988) presented a filling-in model that 

proposes how edges are segmented and how the regions lying between edges are filled 

in with achromatic or chromatic colour. The model is comprised of interactions 

between two systems: a boundary contour (BC) system and a feature contour (FC) 

system. Prior to these systems, luminance is preprocessed by on- and off-centre 

ganglion and geniculate cells. The output signals from this processing provide input to 

both the BC and the FC system. The BC system consists of contrast-sensitive and 

orientationally tuned units, which putatively correspond to simple and complex cortical 

cells. The simple cell units are sensitive to orientation and contrast polarity, and are 

activated by the output from on-cells in the preprocessing stage. The complex cell units 

are sensitive to orientation regardless of contrast polarity, and are activated by simple 
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cell units with the same axis of orientation, but opposite contrast polarity preference. 

Thus, the BC system encodes the location and orientation of edges, which is used as 

input to the FC system. The FC system contains an array of intimately connected cells 

that rapidly spread signals between each other. Bottom-up input from on-cells from the 

preprocessing stage generate FC signals that laterally diffuse from edges (defined by the 

BC system) to fill in regions between edges. Neural activity in the FC system 

corresponds to the percept of brightness. Note that Grossberg and colleagues assume 

that the BC system does not generate any visible percepts; we only consciously “see” 

colour and brightness that is propagated between BC signals. 

In Grossberg and colleagues’ model, the lateral spread of (FC) brightness signals is 

moderated by inhibition from (BC) edge signals, meaning that brightness signals are 

diffused and averaged within boundaries, but do not cross boundaries. More recently, 

Rudd and colleagues (Rudd, 2001, 2003, 2013; Rudd & Arrington, 2001; Rudd & Popa, 

2007; Rudd & Zemach 2004, 2005, 2007) have developed a model combining edge 

integration and filling-in mechanisms, which allows filling-in signals to spread across 

edges. Similar to retinex theory, edge ratios are mathematically computed and then 

integrated across space. However, in Rudd’s model, the value of the weight that edges 

are given falls off with distance from the patch of interest. Additionally, the edge 

weights depend on whether the target patch is a decrement (lower in luminance) 

relative to its surround, or an increment (higher in luminance) relative to its immediate 

surround. For decrements, far edges are weighted about 30% as large as the weight of 

an adjacent edge, while for increments far edges are weighted about 79% as large as the 

weight of an adjacent edge. Rudd has proposed that the edge integration path begins 

with regions of common background that surround surfaces of interest and propagates 

from there to the location of each individual surface via the shortest route. He has 

suggested that figural organisation from higher visual areas (e.g. cortical area V4) plays 

a role in selecting edges for long-range spatial integration. 

Similar to retinex, some filling-in models (e.g. Grossberg & Todorović’s, 1988) can 

take into account shallow gradients that are caused by inhomogeneous illumination (i.e. 

illumination that varies gradually across a scene). However, they are inherently 

brightness models because there is no principled way to differentiate illumination or 

depth edges from reflectance edges. Rudd talks about the propagation of lightness, but 
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he has explicitly stated that the neural mechanisms involved in lightness and brightness 

computations are the same, and that cognitive or “top down” factors are involved in the 

interpretation of the neural image produced by the edge integration mechanism (Rudd, 

2013). Thus his model is also essentially a brightness model. 

 

Spatial filtering 

A class of brightness models descended from early contrast theories involve 

spatial filtering and contrast normalisation of the retinal image. Like the early contrast 

theories, spatial filtering models generally do not distinguish between lightness and 

brightness, or if they do they regard the recovery of surface lightness as a separate, 

subsequent step to brightness computation and is not dealt with by the models. Over 

the years many spatial filtering models have been developed by researchers such as 

Marr (1982, Marr & Hildreth, 1980), Watt and Morgan (1985; MIRAGE), Morrone and 

Burr (1988), Kingdom and Moulden (1992; MIDAAS), Heinemann and Chase (1995), 

McArthur and Moulden (1999), and Shapiro & Lu (2011). These models were motivated 

by receptive field properties of early visual cortex, which is comprised of multiple filter 

channels tuned to different spatial frequencies and orientations (DeValois et al., 1982; 

DeValois & DeValois, 1988; Wilson & Wilkinson, 2003). Similar to filling-in models, each 

model applies a set of spatial filters based on receptive fields to an image. However, the 

receptive fields filter the image directly, and so the output of this filtering directly 

corresponds to perceived brightness. This is more similar to early contrast models 

involving lateral inhibition. Perhaps the most influential spatial filtering model is 

Blakeslee and McCourt’s oriented difference-of-Gaussian multiscale filtering model 

(ODOG; Blakeslee & McCourt, 1999, 2001, 2004; Blakeslee et al., 2005, 2008). In the 

ODOG model, filters are constructed from the difference of Gaussians whose centres are 

shifted with respect to each other. They are characterised as Gaussian blobs with 

inhibitory flanks that are orientation and spatial frequency selective, and have been 

suggested to correspond to cortical simple cells (except that they are elongated in the 

wrong direction relative to those in the cortex; Blakeslee & McCourt, 2004). Six 

multiscale filters with different orientations are convolved with the image and then 

contrast normalised (using RMS contrast). This leads to six normalised outputs, which 

are summed to produce the final model output, which is a prediction of perceived 
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brightness. Blakeslee and McCourt have stated that an advantage of their model is that it 

can explain effects such as White’s effect, grating induction, and Mach bands, which are 

not predicted by filling-in models. However, unlike filling-in models, brightness 

computations in spatial filtering models are limited by the size of the largest scale 

spatial frequency filters or receptive fields. 

 

Framework models 

The theories outlined so far have emphasised low-level contributions to the 

perception of lightness1. Framework models distinguish lightness and brightness. They 

have also attempted to account for the effects of scene layout on lightness perception, so 

represent a mid-level approach to lightness perception. These models propose that the 

visual system divides images into regions of common illumination, without requiring 

that the visual system generates an explicit representation of the intensity of the 

illuminant. The visual system computes lightness within these regions, which are called 

atmospheres (Adelson, 2000) or frameworks (Bressan, 2006; Gilchrist, 2006; Gilchrist 

et al., 1999). 

The most widely known of these models is Gilchrist’s anchoring theory (Gilchrist, 

2006; Gilchrist et al., 1999). The motivation behind anchoring theory came from the 

problem of mapping ambiguous luminance values and ratios onto lightness values. For 

example, two adjacent dark surfaces under bright illumination (e.g. black and dark grey) 

could produce the same luminances on the retina as two light surfaces under dim 

illumination (e.g. light grey and white). An anchoring rule is needed to assign fixed 

lightness values to ambiguous luminance values. Gilchrist resolved the anchoring 

problem in the same way as edge-integration theories (Land, 1986; Rudd, 2013). He 

asserted that the visual system assigns a fixed lightness value (white) to the highest 

luminance in a scene, which serves as a lightness anchor. Other lightness values are 

computed by forming luminance ratios relative to this anchor point. To determine how 

these luminance ratios are scaled, the theory proposes that the perceived range of greys 

                                                           
 

1 with the exception of Rudd’s model, which proposed that figural organisation affects the path 

of brightness propagation. 
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tends towards 30:1, which is the canonical range between black and white (Gilchrist, 

2006). Scale normalisation occurs in the form of expansion when the range of 

luminances is less than 30:1, and compression when the range is greater than this. 

For scenes containing more than just two luminance values, Gilchrist has asserted 

that luminance values are anchored and scaled relative to their local framework (an area 

of approximately constant illumination) and their global framework (the entire display 

or visual field; an idea first introduced by Kardos, 1934). Gilchrist has claimed that there 

are strong and weak factors that generate frameworks. Strong segmentation factors 

include penumbra and depth boundaries. Weaker segmentation factors include Gestalt 

grouping factors such as proximity, surroundedness (closely related to the Gestalt 

principle of figure/ground), common fate (Agostini & Proffitt, 1993), similarity 

(Laurinen et al., 1997) and T- and X-junctions. The strength or weight given to a 

framework depends on a number of factors. Stronger frameworks are larger, have a 

greater degree of articulation (defined as the number of surfaces in the framework), and 

stronger segregation (determined by the factors mentioned above). 

Bressan (2006) proposed a modified version of anchoring theory, called double 

anchoring theory (DAT). The rules defining frameworks differ from the original model, 

and the “double” in double anchoring theory refers to the addition of a second 

anchoring step. The first anchoring step is the same as in the original anchoring model, 

i.e. the highest luminance is assigned the value of white. In the second step, the 

“surround” is also assigned a value of white, thus resulting in two lightness values being 

assigned to every surface within a framework. Final lightness values are calculated by 

weighting the two values according to factors such as the relative size of the surround, 

the degree of articulation in the surround, and its absolute luminance. Unfortunately, 

Bressan has not clearly specified what constitutes the “surround”, so it remains unclear 

how to apply the model to arbitrary scenes. 

 

Decomposition models 

Decomposition models were developed from Helmholtz’s recognition that our 

perception resembles components of the distal stimuli. Decomposition models suggest 

that the visual system perceptually decomposes luminance values into representations 
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of their causal sources (e.g. reflectance, illumination, and shape). This process is often 

referred to as intrinsic image analysis, but does not necessarily imply a strict “inverse” of 

the image formation process, i.e. the result need not be veridical. Compared to theories 

outlined in previous sections, one major advantage of the intrinsic image analysis 

approach is that the process reflects our perception of the world – we get distinct 

impressions of reflectance properties, illumination, and object shape. Decomposition 

models explore how the visual system might compute intrinsic images. 

 

Intrinsic images and layers 

Adelson and Pentland (1996) described the problem of computing intrinsic 

images using a workshop metaphor. The workshop has three specialists: a painter, a 

lighting designer, and a metal bender. Any image can be reproduced using each 

worker’s speciality alone while holding the other two specialties constant. The painter’s 

solution accounts for all the information in an image with variations in grey shades of 

paint (assuming the scene is flat and uniformly illuminated; Figure 1.2A). The lighting 

designer’s solution accounts for all the image information with variations in local 

illumination (assuming the scene is flat with constant reflectance; Figure 1.2B). The 

metal worker’s solution accounts for all the image information with variations in 

shading caused by changes in the surface normal with respect to a single distant light 

source (assuming the scene also has constant reflectance and viewed from a single 

position for the surfaces to properly line up; Figure 1.2C). Although each specialist could 

construct a given image on their own, they can also cooperate and combine their 

specialities to produce the same image. The many-to-one mapping problem of intrinsic 

image analysis is portrayed by the fact that each specialty (painting, lighting, and 

bending) can be used together in an infinite combination of ways to achieve the same 

image. It is impossible to “undo” or reverse the entanglement of sources of image 

variance, so any decomposition approach must rely on constraints or assumptions 

imposed by the visual system on a given image. Below we discuss the various methods 

proposed by decomposition models for applying these constraints. 
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Figure 1.2. Workshop metaphor taken from Adelson and Pentland (1996). The same 

image can be produced solely by the painter (A), the lighting designer (B), and the metal 

worker (C). See main body text for details. 

 

Layers models explicitly describe the phenomenal decomposition (or scission) of 

the retinal image into multiple images or separate layers. This concept was first applied 

in Metelli’s (1970, 1974a, 1974b) work on transparency, which described the 

phenomenal decomposition of a single region of uniform luminance into two surface 

layers, one of which was transparent. Unlike brightness models, which have no 

capability of differentiating illumination or depth boundaries from reflectance 

boundaries, in layers models the interpretation of edges plays a key role in the recovery 

process. 

In a seminal paper, Barrow and Tenenbaum (1978) proposed that the visual 

system recovers a set of layers called intrinsic images from the retinal image. Each 

intrinsic image maps a specific component of the scene such as reflectance, orientation, 

distance, or incident illumination at every point in the retinal image. Importantly, the 

different layers mutually constrain one another rather than existing independently. 

Barrow and Tenenbaum addressed the problem of computing intrinsic images by 

proposing that, “while isolated fragments of an image have inherent ambiguity, 

interactions among fragments resulting from assumed constraints can lead to a unique 

interpretation of the whole image” (p. 9). The concept of interactions among local 

features to reduce ambiguity is integral to the layers approach. In the intrinsic images 

model, constraints are imposed on different parts of an image such as regions, edges, 

and junctions. For example, regions have either smoothly varying intensities, which 

correspond to a curved surface with constant reflectance, or have constant intensity, 
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which corresponds to a shadowed surface not directly facing the light source, or 

alternatively an illuminated planar surface. Edges either correspond to the boundary of 

a surface or to the boundary of a cast shadow, and this is classified according to the 

appearance of the regions on either side of the edge. In the model, T-junctions are 

caused by extremal boundaries (edges of objects), and provide constraints that can 

resolve the ambiguities in edges. Barrow and Tenenbaum suggested that when intrinsic 

characteristics are ambiguous, for example when regions lack information, the visual 

system relies on plausible estimates derived from assumptions about likely scene 

characteristics. While Barrow and Tenenbaum used relatively simple scenes, they 

argued that their model could be extended in a straightforward way towards real-world 

scenes. They proposed that other characteristics that are not present in their simple 

scenes, but are present in complex scenes, may form intrinsic images such as 

transparency, specularity, and luminosity. 

In a series of papers, Anderson and colleagues (Anderson, 1997, 1999, 2003a, 

2003b; Anderson & Winawer, 2005, 2008; Anderson & Khang, 2010; Anderson et al., 

2011) have presented a model of layered image decomposition (which they have 

termed scission) based on geometric and photometric relationships that occur at 

contour junctions (where edges meet causing X, T, or I junctions) and terminations of 

gradients. Geometric relationships arise from the geometric continuity of targets and 

their surrounds. Photometric relationships refer to the consistency of polarity 

relationships of the borders separating targets from their surrounds (Anderson & 

Winawer, 2008). When the contrast polarity of at least two aligned edges is preserved, 

i.e. they both change from light to dark, or dark to light, this meets the conditions for the 

image to perceptually divide into causal layers, for example a transparent layer and an 

underlying surface, or the reflectance of a surface and the prevailing illumination 

(Adelson & Anandan, 1990; Beck et al., 1984; Metelli, 1970, 1974a, 1974b). Anderson 

and colleagues proposed a transmittance anchoring principle (TAP; Anderson, 1999) 

which states that “the visual system treats the highest contrast image regions as regions 

in plain view and only infers the presence of transparent surfaces if there are spatial or 

spatio-temporal (Anderson, Singh, & Meng, 2006) perturbations in the contrast 

magnitude along contours, surfaces, or textures” (Anderson & Winawer, 2008, p. 5). A 

transmittance value of 1 (completely opaque) is assigned to regions in plain view, and 

transparent layers are scaled relative to this anchor (Anderson & Khang, 2010). 
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Anderson and Winawer (2005, 2008) demonstrated that the way an image is parsed 

into layered image representations can have a large effect on lightness perception, in 

that the way the image is decomposed determines how luminance is partitioned 

between different layers. Anderson and Khang (2010) showed that destroying percepts 

of transparency by adding a ring around the target destroys these shifts in perceived 

colour caused by the transparency. 

Work on transparency has demonstrated that when scission occurs, it can induce 

profound shifts in perceived lightness. However, Anderson and colleagues have stated 

that not all lightness effects are necessarily the consequence of decomposing images 

into layered representations (Anderson & Winawer, 2008). For example, it remains to 

be determined whether decomposition into layers is involved in lightness computations 

when all surfaces are under the same illuminant and no transparent surfaces are 

present. Illumination estimation models, which are described in the next section, 

advocate the idea that the visual system decomposes images into representations of 

reflectance and illumination. 

 

Illumination estimation 

Illumination estimation theories are broadly consistent with scission theories in 

that they advocate an explicit decomposition of luminance into illumination and surface 

reflectance. The decomposition theories discussed so far have been ambivalent to the 

order of lightness and illumination computations. However, proponents of illumination 

estimation have suggested that the visual system uses estimates of the illumination to 

subsequently (or concurrently) compute surface lightness (e.g. Logvinenko, 1999, 2003; 

Logvinenko et al., 2005; Logvinenko & Ross, 2005; Ikeda et al., 1998; for colour see e.g. 

Kraft & Brainard, 1999; Kraft et al., 2002; Lee, 1986). This is similar to Helmholtz’s 

views. 

An advantage of the illumination estimation approach is that forming a 

representation of the illumination conditions from information-rich areas of a scene can 

potentially constrain lightness estimates of surfaces in remote areas that lack 

information and are thus ambiguous. This would be particularly useful in 3D scenes. For 

example, Ikeda et al. (1998) presented the concept of the recognised visual space of 
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illumination (RVSI), which is described as the state of an observer’s recognition for 

illumination in the space between objects. They proposed that once the RVSI is 

constructed by the visual system, it determines lightness judgements of objects in the 

room. However, the question remains as to how the visual system forms the RVSI in the 

first place. Like the circularity inherent in Helmholtz’s ideas, to generate a 

representation of the illumination from complex areas of a scene, the reflectance of 

those surfaces must be known. 

A number of authors have proposed that the visual system uses cues such as 

shading, shadows and specular highlights to estimate the spatial and spectral 

distribution of the illumination in 3D scenes (Boyaci et al., 2003, 2004, 2006a, 2006b; 

Doerschner et al., 2007; Kraft, et al., 2002; Maloney, 2002; Ripamonti et al., 2004; 

Snyder et al., 2005; Yang & Maloney, 2001). Similar to the RVSI proposed by Ikeda et al. 

(1998), these authors have suggested that the visual system generates an estimate of 

the scene illuminant, which they term an equivalent illumination model (EIM). An EIM 

may contain estimates of the direction, intensity, chromaticity, and diffuseness of the 

light source2. These estimates are inferred by applying algorithms to observers’ 

lightness judgments of flat surfaces that vary in orientation or depth with respect to a 

light source in a 3D scene containing various other objects. It has been suggested that 

various cues to the illumination, such as specular highlights, shadows, and shading 

provide the visual system with information about the EIM (Boyaci, et al., 2006a, 2006b; 

Kraft et al., 2002; Maloney, 2002; Snyder et al., 2005; Yang & Maloney, 2001). Similar to 

the RVSI, an EIM can be generalised to surfaces in the scene that lack explicit 

illumination cues, and used to constrain estimates of the colour or lightness of those 

surfaces. This will be explored further below. 

 

 

                                                           
 

2 In traditional colour and lightness constancy research, the term “EIM” has been used to refer to 
an estimate of the illumination chromaticity/intensity inferred by the visual system. Here 
Boyaci and colleagues have posited that the internal representation of the illumination might 
include both spatial and spectral properties. Although most models that assume an EIM do not 
include all of these properties, the use of the term EIM in this thesis explicitly refers to Boyaci 
and colleagues’ definition. 
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Relating Existing Lightness Theories to Real-World Scenes 

Much of the field of lightness perception has been dominated by simple, matte 

displays, most of which are two-dimensional centre-surround or Mondrian-like images 

like those in Figure 1.1. This is reflected in experimental evidence that supports the 

various theories and models outlined above. For example, Wallach’s ratio principle was 

developed from an experiment where observers were presented with two centre-

surround displays, similar to the simultaneous contrast display in Figure 1.1A, but 

comprised of a circular disk surrounded by an annulus. Each annulus was different in 

lightness, and the observers adjusted the luminance of one of the disks until the two 

disks appeared equal in lightness. The results showed that the disks were perceived to 

be equal when the luminance ratios of the two displays were almost equal. From this 

Wallach concluded that lightness is determined by the luminance ratio between a 

surface and its adjacent surround. 

Early contrast theorists like Wallach justified such an experimental approach 

because they believed that the effects of local stimulation could generalise to the entire 

visual field. However, this assumption has been undermined by studies that show that 

remote areas of a scene influence the lightness of a target patch, not just its immediate 

surroundings (Adelson, 1993, 1995, 2000; Hillis & Brainard, 2007; Hochberg & Beck, 

1954; Logvinenko, 1999; Logvinenko & Ross, 2005, Williams et al., 1998). Furthermore, 

there are many examples of reverse contrast effects where the shift in the lightness of a 

patch is in the opposite direction to that predicted by contrast, such as in White’s 

illusion (White, 1981; also see Agostini & Galmonte, 2002; Bressan, 2001; Economou et 

al., 1998). Spatial filtering, filling-in and edge integration models take into account the 

relationship between a target area and its larger context. However, these approaches do 

not account for the effect of perceived depth on surface lightness. Various studies have 

shown that the lightness of a test patch changes with perceived depth, even when 

retinal location remains constant (Gilchrist, 1977, 1980; Schirillo et al., 1990). 

Furthermore, they are not capable of differentiating different physical sources of image 

structure, for example discriminating reflectance edges from illumination edges. The 

predictions of these models are restricted to flat, matte, scenes and are thus difficult to 

extrapolate to structurally complex natural scenes. 
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Framework models have attempted to account for the effects of scene structure on 

perceived lightness by suggesting that lightness values are computed within 

frameworks divided by depth edges or shadows. However, it is unclear how to define 

frameworks in images generated by most natural scenes, where there is continuous 

variation in image structure caused by shading of 3D objects. Intrinsic image or layers 

models are perhaps the most effective class of models at tackling the issue of how scene 

layout affects lightness computations (or a transparent surface overlaying another 

surface). Decomposition models in general have been accused of not accounting for 

errors in lightness perception because they predict veridical perception (Gilchrist, 

2006). This may be true of some models, however others like Anderson and colleagues 

(Anderson, 1997, 1999, 2003a, 2003b; Anderson & Winawer, 2005, 2008; Anderson & 

Khang, 2010; Anderson et al., 2011) have only suggested that the visual system 

decomposes images, not that it does so veridically. Furthermore, EIMs actually model 

the pattern of errors made by observers when making lightness judgments. Therefore, 

decomposition models cannot be rejected on the basis that they do not account for 

errors in lightness. 

With a few exceptions, the scenes used in most lightness studies are impoverished, 

in that light emitted from a surface contains essentially no diagnostic information about 

the light field (Maloney, 1999), which is defined as the spectral power distribution of 

light arriving from every direction at every point in the scene (Gershun, 1936/1939). 

Matte surfaces absorb incident light and re-emit it in all directions, so information about 

the source is lost (Maloney et al., 2011), especially if those matte surfaces are smooth 

and flat. Such displays have been used because they allow rigorous control over 

extraneous variables. However, disentangling the contributions of reflectance and 

illumination in Mondrian worlds is least constrained, and hence a maximally ill-posed 

problem. As mentioned earlier, most natural surfaces are made of materials that are not 

characterised by purely diffuse reflectance but rather contain microstructure that 

generates both diffuse and specular reflections, and mesostructure (medium-scale 

surface relief), which interacts with light to create a more complex light field. One model 

that does exploit information about the light field is the equivalent illumination model 

(EIM), which is a representation of the light field (also referred to as the visual light 

field). 
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The EIM addresses many limitations of previous theories.  This approach is 

capable of dealing with more natural, information-rich 3D scenes compared to 

brightness and framework theories. An advantage over layers models, which are 

ambivalent about the order of lightness and illumination computations, is that an EIM 

formed from information-rich areas of a scene is theoretically capable of extending to 

other areas of the scene. Thus, lightness can be equally constrained for surfaces that 

lack potentially diagnostic information about the illumination. Finally, equivalent 

illumination models alleviate the circularity of the illumination-estimation approach by 

specifying what information in the image, or which image cues, the visual system might 

use to form a representation of the light field. Compared to other theories of lightness 

perception reviewed, the EIM appears to be more generalizable to the information-rich 

scenes normally encountered by humans. The next section will evaluate evidence that 

the visual system has access to various components of the light field as suggested by 

EIMs, and will consider additional image information not present in EIM studies that 

may assist light field estimations. We also evaluate whether resolving components of 

the light field could be used to constrain estimates of surface lightness. 

 

Potential Information about Lightness Available in Real-World Scenes 

Proponents of EIMs are uncommitted to the nature of the representation of the 

illumination, meaning that observers do not need to have perceptual access to 

representations of the light field. However, there is some evidence that the visual 

system can actually resolve components of the light field (e.g. the direction and intensity 

of the light source) based on information in the image. Below we describe how various 

image cues in natural scenes could provide information about the light field, and how 

this could potentially constrain estimates of surface lightness. 

 

Shading, cast shadows and specular highlights 

Information about the direction of a light source can theoretically be obtained 

through shading on curved objects whose diffuse shading is brightest at points where 

the surface normal (perpendicular to the tangent) is directly facing the light source 
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(Lambert’s cosine law; Lambert, 1760). Directional information may also be given by 

cast shadows, which are cast away from light sources, and specular highlights, where 

the surface normal bisects the angle between the direction of the light source and the 

specular highlight. The brightness of specular highlights may also provide information 

about the relative intensity of the illumination for objects in plain view versus in 

shadow. The clarity and sharpness of these reflections is determined by how much 

incident light is scattered. Less scattering leads to shinier (glossy) materials, with a 

purely specular object (zero scattering) acting as a mirror. Unless the object is purely 

specular (i.e. a mirror), only a portion of incident light is reflected specularly, so 

estimates of the intensity of the illumination would not be veridical without knowing 

that proportion. 

If the visual system forms a representation of the light field, then this 

representation would be better constrained with the additional information given by 

shadows, shading, and specular highlights, relative to flat, matte displays. However, 

there would still be ambiguities about the relative strength of directional and diffuse 

components of the illumination, and the strength of the specular and diffuse 

components of a surface’s reflectance. If the visual system uses the extra information 

available in complex scenes, it would still have to impose assumptions or priors about 

illumination, objects, and surfaces to reach an estimate of these various components of 

the light field. In EIMs, algorithms are applied to observers’ psychophysical data (their 

lightness judgments) to retrospectively calculate what their estimations might have 

been. Regardless of what these assumptions might be, or how they might have been 

formed over time (through learning or evolution), the studies below suggest that 

observers do form a representation of the light field. The ambiguities are reflected in 

the pattern of errors made by observers (e.g. Boyaci et al., 2006a). 

Koenderink et al. (2007a) conducted an experiment to see whether observers 

were sensitive to different aspects of the illumination in a scene that contained 3D 

objects with shading and cast shadows. They photographed a 3D scene containing 

uniform-albedo clay penguins standing in a circle under different lighting conditions 

(Figure 1.3A-C). The scene was viewed binocularly and observers judged the fit of a 

gauge object inserted at various locations (Figure 1.3D-H). They were asked to “make 

the test sphere appear like it fits into the scene” (p. 1597) by adjusting a number of 
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lighting parameters including the direction (azimuth and elevation) of the light source, 

the diffuseness of the beam, and the intensity of the illumination. With a few exceptions, 

the results showed that settings of each parameter were reliable within and between 

observers, meaning that observers were able to identify the various components of the 

light field consistently. This suggests that observers formed a consistent impression of 

the structure of the light field, even at locations in empty space remote from other 

objects. Pont & Koenderink (2007) similarly showed that observers can estimate the 

direction and diffuseness of the illumination from the appearance of objects. These 

studies support the idea proposed by proponents of EIMs that the visual system can 

generate estimates of the light field through various image cues. 

 

 

Figure 1.3. Stimuli used in Koenderink et al.’s (2007a) experiment. (A-C) The different 

lighting conditions that were used in the experiment. (D-H) The various locations of the 

gauge figure for the scene under illuminant (A). 
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If the visual system has a representation of the intensity and direction of the 

illumination, then it is potentially possible to take into account a target’s orientation 

with respect to the light source and estimate surface lightness. For example, Boyaci et al. 

(2006a) had observers judge the lightness of a flat mate surface that varied in 

orientation in a stereoscopically viewed virtual scene, which either contained or lacked 

cast shadows, shading, and specular highlights (Figure 1.4). The observers’ task was to 

match the lightness of the test surface within the scene to a nearby lightness scale. 

When each potential cue was presented in isolation (Figure 1.4A-C), observers’ 

lightness judgments appeared to take 3D surface pose into account. Furthermore, 

observers’ lightness estimates were more reliable when several cues to the illumination 

were present (Figure 1.4D) than when each cue was presented in isolation. Boyaci et al. 

(2006a) concluded that the visual system uses these cues to derive information about 

the illumination to constrain estimates of surface albedo. Similar arguments were made 

by Snyder et al. (2005), who assessed observers’ ability to compensate for illumination 

gradients in binocularly viewed virtual scenes (Figure 1.5). In this study, observers 

adjusted an adjustable surface in the near room to match the lightness of a test surface 

that varied in depth from trial to trial. The authors found that observers judged 

lightness more veridically when the scene contained floating, glossy spheres (Figure 

1.5C) than for similar scenes that contained no specular cues (Figure 1.5B). The 

experiments by Boyaci et al. (2006a) and Snyder et al. (2005) suggest that the visual 

system may use contextual cues such as specular highlights, shading and shadows to 

estimate components of the EIM, which generalises to areas of the scene where these 

cues are absent, thus constraining lightness judgments. 
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Figure 1.4. The cue conditions in Boyaci et al.’s (2006a) study. (A) Cast shadows only 

condition; (B) Shading only condition; (C) Specular highlights only condition; (D) All cues 

condition. 

 

 

Figure 1.5. Setup of Snyder et al.’s (2005) experiment. (A) Bird’s eye representation of 

the scene setup. (B) Observer’s view of the scene without glossy spheres. (C) Observer’s 

view of the scene with glossy spheres. 
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Texture caused by complex mesostructure 

The 3D scenes in EIM experiments better represent real-world scenes compared 

to traditional Mondrian stimuli (e.g. Cataliotti & Gilchrist, 1995; Gilchrist et al., 1999; 

Land & McCann, 1971). However, they still resemble simple “toy-worlds” containing 

smooth objects and simple lighting conditions rather than the different materials, 

textures, and complex light fields often encountered real-world scenes. For example, the 

large number of purely specular spheres used in Snyder et al.’s (2005) study, while 

providing illuminant information in their experiment, are not likely to be present in 

natural scenes. Furthermore, even smooth matte surfaces in real-world scenes, such as 

plaster or concrete, are usually rough on a scale that is resolved by the visual system 

(Koenderink et al., 2007b). Texture created by illuminated roughness may provide the 

visual system with directional information about the light source in the form of 

illuminance flow (Koenderink et al., 2007b; Pont & Koenderink, 2003). Illuminated 

texture caused by surface roughness creates local luminance perturbations that look 

like “dipoles” (a juxtaposition of a light and dark blob; Koenderink et al., 2003). The 

“dipole vector” (e.g. pointing from the dark to the light side) points in the direction of 

the illumination. Thus averaging over these dipoles (discarding the sign) can form a 

strong cue to the direction (azimuth) of the illumination, albeit with 180° ambiguity 

(Koenderink et al., 2003). Indeed, it has been found that depending on the texture, 

observers can accurately estimate the direction of illuminance flow (Koenderink et al., 

2007b; Koenderink et al., 2004). This information about the direction of the 

illumination could potentially constrain lightness estimates of a remote patch (like in 

EIM experiments) in the same way as shading where the luminance of the patch falls off 

with the cosine of the angle between the direction of the incident light and the surface 

normal (Lambert’s cosine law; Lambert, 1760). However, like with shading from shape, 

there are ambiguities about strength of shading with surface relief (higher or deeper 

relief leads to darker shading) and angle of illumination (grazing angles also lead to 

darker shading). Again, the visual system would need to impose assumptions when 

estimating lightness from illuminance flow. 

Rough surfaces are also affected by interreflections and vignetting (the surface 

itself partially blocking the primary light source to other parts of the surface; Pont & 

Koenderink, 2003). If the visual system forms a representation of the light field that 
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constrains lightness estimates, then the extent to which interreflections counteract 

vignetting effects (Thompson et al., 2011, p.218) may be important in calculating 

surface lightness. Studies have demonstrated that 3D scenes even with only one 

reflectance contain cues to disentangle the relative contributions of surface reflectance 

and illumination. Motoyoshi et al. (2007) and Sharan et al. (2008) had observers view 

photographs of matte and glossy uniformly painted surfaces containing complex 

mesostructure that were equated for mean luminance. When these surfaces were 

viewed in isolation, observers’ lightness judgments were positively correlated with true 

surface reflectance although these data exhibited a regression to the mean (white 

surfaces appeared darker than they were whereas black surfaces appeared lighter). 

Gilchrist and Jacobsen (1984) found that shading contrast generated by secondary 

reflections (interreflections) provides the visual system with information about surface 

lightness. They presented observers with two uniformly painted scenes with identical 

3D structure except that one was painted white and the other black. In one part of the 

experiment they lowered the illumination of the white room so that the luminance at 

each point was lower than in the black room. The brightly lit black scene appeared mid-

grey and the dimly lit white scene appeared light grey. The white scene appeared lighter 

than the black scene despite having lower average luminance. Thus observers could 

distinguish the two rooms independent of their brightness. 

The luminance profiles of Gilchrist and Jacobsen’s (1984) scenes revealed that the 

contrast of the shadows in the black room was stronger than in the white room. Since 

the scenes were structurally identical, the difference in shadow strength had to be 

caused by the amount of incident light reflected by surfaces in each room. Reflected 

light from one surface is capable of indirectly illuminating other nearby surfaces. White 

surfaces reflect up to 90% of incident light, whereas black surfaces reflect as little as 

3%. Gilchrist and Jacobsen pointed out that even after two reflections, 81% of the light 

would remain unabsorbed in the white scene and could be used for further 

interreflections. After two reflections in the black room, only 0.09% of the light would 

remain unabsorbed, which is a negligible amount to contribute to further 

interreflections. Therefore, much more reflected light indirectly illuminated surfaces in 

the white scene, leading to “filled-in” shadows compared to the black scene, which had 

darker, more pronounced shadows. The authors suggested that the amount of shadow 
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filling-in provided additional information about surface lightness. Note that this 

information is relevant in rooms or surfaces with a single albedo. 

 

Unanswered Questions 

The studies presented above suggest that there is information present in natural 

scenes that has not been captured by current models of lightness perception. The 

experiments supporting EIMs come closest to utilising the information available in 

information-rich scenes such as specular highlights, shadows, and shading information, 

but they miss out on additional information that might be provided by complex 

mesostructure, interreflections and illumination flow. Furthermore, there is currently 

no systematic attempt to assess the relative importance of different illumination cues 

directly. Boyaci et al. (2006) found that including all cues to the illumination in a scene 

was better than having one cue present, but they did not test all cue combinations to 

determine their relative contributions. An aim of the present thesis is to test whether 

information created by complex mesostructure helps the visual system constrain 

estimates of surface lightness, and to also systematically assess the relative importance 

of potential cues to the illumination. 

Though EIMs provide many benefits over other theories, one potential confound is 

that supporting experiments do not control for low-level perceptual mechanisms that 

could potentially account for the results. It is unclear whether the preceding results 

arose from an estimation of the illumination field, as suggested by EIMs, or whether 

they were the result of low-level differences in image content. The addition of specular 

highlights and/or the presence of shadows and shading would have changed the range 

and distribution of luminance values in the image, which may have influenced lightness 

judgments. Previous studies have not attempted to tease apart low-level explanations 

involving luminance and contrast distributions from the mid-level explanations 

involving representations of the light field. 

Finally, studies using rendered scenes often overlook the fact that illumination in 

natural environments has a high dynamic range of intensities, and the light field fills the 

entire space of a scene (Thompson et al., 2011, p. 205). Most studies use a combination 

of point source and diffuse lighting. Similar to the use of Mondrian displays, this 
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approach is used as it allows rigorous control over variables in the experiment. 

Unfortunately this is at the cost of being unable to reproduce the complexity of a 

realistic light field. An experiment by Ruppertsberg and Bloj (2007) demonstrates that 

experimental control need not be compromised by the complexity of lighting in a scene. 

They replicated Gilchrist and Jacobsen’s (1984) findings using virtual rather than 

physical scenes. By using virtual scenes they were able to better control aspects of their 

stimuli such as equating the average luminance of the black and white rooms. This 

demonstrates a level of control that can be exerted in virtual scenes but that is not 

possible for physical scenes and stimuli. 

Approximating natural light fields can be achieved in rendered environments 

using image-based lighting with light probes (Debevec, 1998; Thompson et al., 2011, p. 

202). Light probes are photographs that capture the complexity of light arriving at a 

single point. This information can then be mapped into the rendering environment and 

used to illuminate scenes, creating photo-realistic effects (Debevec, 1998). Therefore, it 

is possible to bring naturalistic information to controlled settings. The following 

experimental chapters attempt to take a first step to adding the control that is necessary 

to tease apart low- and mid-level contributions to lightness perception while 

incorporating the complexity of natural surfaces. 

The experiments in the following chapters were designed to (a) assess the relative 

influence of different image cues and levels of image complexity on lightness perception 

and (b) tease apart low-level contextual influences on perceived lightness from mid-

level explanations that invoke the estimates of the illuminant or layered image 

decomposition. Centre-surround displays like those in Figure 1.1A have an important 

history in lightness perception, yet they are one of the most ambiguous types of stimuli. 

In the following experiments we have introduced some complexity into these displays, 

allowing control over extraneous variables while making these artificial environment as 

natural as possible. The stimuli used are virtual centre-surround displays with flat, 

matte central test patches and various surround types rendered under a natural 

illumination field. In Chapter 2 we test the hypothesis that lightness constancy of the 

test patch will improve when the surround contains complex mesostructure (high 

surface relief) and specular highlights (gloss) compared to when the surround lacks this 

information. In a series of control experiments, we test whether any improvements in 
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lightness constancy arise from information about the light field or whether they can be 

attributed to low-level attributes, such as the distribution of luminances and contrasts 

across different spatial scales. Chapter 3 explores whether low-level mechanisms are 

sufficient to explain lightness constancy of surfaces under changing illumination level, 

where lightness matches do not equate brightness matches. We also seek to determine 

whether the rocky surfaces used in Chapter 2 provide enough information to 

differentiate surfaces based on shading caused by interreflections. We therefore 

manipulate the number of interreflections rendered in the scenes and observe how 

lightness constancy varies as a function of number of interreflections. Experimental 

Chapter 4 aims to explain the qualitatively different pattern of results observed for the 

homogeneous centre-surround displays in Chapter 2. Again, we seek to determine 

whether the effects observed are the result of layered image decomposition (scission) 

or low-level (contrast) mechanisms.  
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Chapter 2. Do Surface Reflectance Properties and 3D 

Mesostructure influence the Perception of Lightness? 

 

The aims of this experimental chapter are twofold. First, we aim to systematically 

assess the relative importance of potential cues to the illumination on lightness 

constancy, specifically specular highlights and shading caused by complex 

mesostructure. Second, we aim to determine whether lightness effects are 

predominantly the result of the visual system forming a representation of the 

illumination (mid-level explanation), or predominantly the result of differences in 

luminance and contrast of the surrounds between the various conditions (low-level 

explanation). The stimuli used in the following experiments were graphically rendered 

centre-surround displays with flat, matte central test patches and various surround 

types, rendered under a natural illumination field (Figures 2.1, 2.5, 2.9, and 2.15). The 

stimuli provide a number of advantages over displays used in previous lightness 

studies. For example, in some conditions the surfaces contained complex mesostructure, 

which generated additional information not present in EIM studies to potentially 

constrain lightness. Additionally, surfaces were embedded in a natural illumination 

field, which makes them more comparable to surfaces found in the real world. 

Importantly, these stimuli allow the results to be directly compared to simple centre-

surround displays and Mondrians that have dominated the lightness literature. Finally, 

the control stimuli allow us to better tease apart low-level and mid-level explanations of 

lightness effects compared to previous studies. The experiments in this chapter are a 

first step to demonstrating the potential of using rendered environments to conduct 

controlled experiments with information-rich stimuli. 
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Experiment 1A and 1B: Varying Surface Relief and Gloss Level of the 

Surround 

In Experiment 1 observers performed lightness judgments on the central test 

patches embedded in four surround types: low-relief (flat) matte, low-relief (flat) 

glossy, high-relief (rocky) matte, and high-relief (rocky) glossy (see Figure 2.1). The 

low-relief (flat) surfaces were similar to homogeneous centre-surround displays 

traditionally used in the literature. Rendering the stimuli produced almost identical 

images for the flat matte and glossy conditions. For completeness, we included both 

conditions in Experiment 1A. However, the flat glossy condition was removed in 

Experiment 1B after verifying that the stimuli from both low-relief conditions produced 

indistinguishable images and essentially identical results. We hypothesised that if image 

cues generated by complex mesostructure and gloss help the visual system to constrain 

lightness estimates, then lightness constancy should be better for high-relief rocky 

surfaces compared to low-relief flat surfaces, and for glossy compared to matte surfaces. 

We hypothesised that lightness constancy should be worst when no image cues are 

present (flat surfaces) and best when all image cues are present (rocky glossy surfaces). 

 

Methods 

Observers 

Experiment 1 included two populations of observer. Five observers participated in 

Experiment 1A. Observers AS (the author of this thesis), PM, and KT were experienced 

in psychophysical experiments. Observers DC and RS were inexperienced and paid $20 

per hour for participation. These observers performed five repeats of each condition 

(see procedure). 

Twenty undergraduate first-year psychology students at the University of Sydney 

participated in Experiment 1B. These observers were awarded course credit in 

exchange for participation and performed one repeat of each condition. All observers 

except AS from Experiment 1A were naïve to the aims of the study. 
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Figure 2.1. Computer rendered centre-surround stimuli used in the experiments. (A–D) 

Examples of target surfaces used in Experiment 1. All surrounds shown have equal 

reflectance (19.8%) but differ in their level of gloss and surface relief: (A) low relief (flat), 

matte; (B) low relief (flat), glossy; (C) high relief (rocky), matte; (D) high relief (rocky), glossy. 

Target central patches are shown in black but actually varied in albedo from trial to trial 

during experiments. (E) The adjustable surface used in Experiments 1, 2, and 4. (F) The 

adjustable surface used in Experiment 3. Observers moved a computer mouse left to 

incrementally decrease the albedo and right to incrementally increase the albedo. 
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Apparatus 

Stimuli were presented on a LaCie Electron 22 Blue IV monitor running at a 

refresh rate of 75 Hz and with a resolution of 1280 × 1024 pixels, controlled by a Mac 

Pro computer running Mac OS X 10. Stimulus presentation and data collection were 

controlled by a Matlab (R2010a; Mathworks) script using the Psychophysics Toolbox 

(Brainard, 1997). Stimuli were viewed in a dark room at a viewing distance of 

approximately 70 cm. The carpet and walls of the room were black so that the only 

source of light came from the monitor on which the stimuli were displayed. 

 

Stimuli creation in Blender (v. 2.6) 

Stimuli were computer-rendered centre-surround displays (Figure 2.1). The displays 

contained flat, matte centres that varied in albedo and surrounds that varied in albedo, 

amount of surface relief, and gloss level. Surrounds had either low surface relief (flat; 

Figure 2.1A and 2.1B) or high surface relief (rocky; Figure 2.1C and 2.1D) and were 

either matte (Figure 2.1A and 2.1C) or glossy (Figure 2.1B and 2.1D). The surfaces were 

modelled in the open-source software Blender (v. 2.6). Each surface was created using 

an 800  800 mesh. The textures in each surround were generated with the displace 

modifier, a tool in Blender that displaces vertices in depth in a mesh based on the 

intensity of a texture. Various textures were used to deform the surfaces: the inbuilt 

cloud, marble, and stucci textures as well as textures from images of rocks and rough 

paper. The image of rough paper used is displayed in Figure 2.2. The rocky texture 

image can be found at http://junk-paris-stock.deviantart.com/art/macro-rock-texture-

13-119245673. Table 2.1 shows the modifiers that were used for low- and high-relief 

surfaces and the order in which they were applied. Note that although the rough paper 

texture was used to displace vertices in the low-relief surrounds, this effect was 

extremely subtle, so the rendered images were essentially homogeneous. Also note that, 

although multiple textures were used to deform the high-relief surfaces, we refer to 

them as “rocky” because of their rocky appearance after rendering. 
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Figure 2.2. Paper texture used to deform low-relief (flat) surfaces. 

 

 

 Properties 

Modifier Low-relief surfaces High-relief surfaces 

Displace – stucci (inbuilt) N/A Strength 0.2 

Displace – marble (inbuilt) N/A Strength 0.1 

Displace – clouds (inbuilt) N/A Strength 0.07 

Smooth N/A Factor 0.5; Repeat 50 

Displace – rock N/A Strength 0.003 

Paper Strength 0.01 N/A 

Smooth Factor 0.5; Repeat 50 Factor 0.5; Repeat 50 

Table 2.1. Modifiers used to create the effects in the low-relief (flat) and high-relief 

(rocky) surrounds. The order in which the modifiers are displayed is the order in which they 

were applied (left column, top to bottom). 
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Rendering software: RADIANCE 

Stimuli were rendered using the RADIANCE rendering software (Ward, 1994), 

which simulates physical interactions between illuminants and surfaces. The surfaces 

were rendered using the Ward BRDF model, termed ‘‘plastic’’ in RADIANCE.3 This model 

has five parameters: diffuse components R, G, and B; specularity (PS, the proportion of 

light reflected by the specular component, uncoloured); and microroughness (, which 

determines the amount of specular scatter). Centres were embedded in the surrounds 

and rendered as part of the same scene. Grey shades were assigned to the centre and 

surround regions by adjusting the diffuse reflectance parameters, keeping relative RGB 

values equal. Matte surrounds were assigned a specularity value of 0 and a roughness 

value of 0 whereas glossy surrounds were assigned a specularity value of 0.05 (5% of 

the light reflected from the surface is specular) and a roughness value of 0.01. Surfaces 

were rendered frontoparallel to the observer with two ambient reflections.4 

All surfaces were illuminated by the “grove” light field from the Debevec Light 

Probe Image Gallery (Debevec, 1998; Figure 2.3). This light field is a high dynamic range 

(HDR) photograph of a real forest scene that captures the light arriving from every 

direction to a single point. The HDR image of the light field was mapped into the 

rendering environment and used to illuminate the surfaces. A grey scale version of this 

light field was created so that all surfaces were illuminated by achromatic light. To 

produce high-quality images, all surfaces were rendered 10 times larger than required 

and antialiased, resulting in HDR images of the surfaces with dimensions of 900  900 

pixels. These HDR images were tone-mapped to fit the luminance range of the monitor. 

This was achieved by linearly compressing the diffuse component and nonlinearly 

compressing the specular component of the images (see next section). 

                                                           
 

3 This material is not limited to the physical light-scattering properties of plastic; rather, it can 

be used for a wide variety of reflective materials, such as surfaces made of concrete, wood, 

paint, etc. 

 
4 Rendering with two ambient reflections allowed shadowed areas of the rocky surfaces to be 

indirectly illuminated by other parts of the surface as would occur in natural scenes. This was 

needed to test the hypothesis that observers use the amount of shadow “filling-in” as a cue to 

surface lightness. 
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Figure 2.3. The “grove” light field used to illuminate surfaces used in the experiments. 

(A) Original image taken from http://www.pauldebevec.com/Probes/. (B) Black and white 

variant of the light field used in the experiments so that surfaces were illuminated by 

achromatic light. Note that the quality and dynamic range of the images displayed here is 

lower than what was used in the experiments to illuminate the surfaces. 

 

Tone mapping of RADIANCE HDR images 

The procedure used to tone-map each HDR image was as follows: The diffuse 

component was linearly compressed by transforming luminance values below 140 

cd/m2 with the equation 

 

 
𝐿𝑖

𝐷 =  
𝐻𝑖

𝐷

𝐻𝑚𝑎𝑥
𝐷

 ∙  𝐿𝑚𝑎𝑥
𝐷  , (2.1) 

 

where 𝐿𝑖
𝐷 is the transformed luminance associated with the diffuse component for each 

pixel i, 𝐻𝑖
𝐷 is the original HDR luminance associated with the diffuse component for each 

pixel i, 𝐻𝑚𝑎𝑥
𝐷  is the maximum HDR luminance attributed to diffuse reflectance, and 𝐿𝑚𝑎𝑥

𝐷  

is the maximum luminance assigned to diffuse reflectance in the tone-mapped 

(transformed) image. 𝐻𝑚𝑎𝑥
𝐷  was constant for all images and was equal to 140. 𝐿𝑚𝑎𝑥

𝐷  was 
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constant for all images and was equal to 53.59. Thus, the brightest regions of diffuse 

shading in the tone-mapped image had a luminance of approximately 53.59 cd/m2. 

The specular component (HDR luminance values above 140 cd/m2) was 

compressed nonlinearly to create smooth fall-off of luminance values that started at 

𝐿𝑚𝑎𝑥
𝐷  (53.59 cd/m2) and peaked at 𝐿𝑚𝑎𝑥

𝑆 , the luminance assigned to the brightest 

specular highlight and also the brightest luminance of the monitor (64.98 cd/m2; see 

Figure 2.4). We achieved this by first subtracting 𝐻𝑚𝑎𝑥
𝐷  (140 cd/m2) from each pixel and 

then transforming these values with the equation 

 

 
𝐿𝑖

𝑆 =  (−𝑒
− 

1

𝑅𝑆𝐻𝑖
𝑆

+ 1) ∙ 𝑅 , (2.2) 

 

where 𝐿𝑖
𝑆 is the transformed luminance associated with the specular component for 

each pixel i, R is the luminance range of the specular highlights and is equal to 𝐿𝑚𝑎𝑥
𝑆 −

𝐿𝑚𝑎𝑥
𝐷 , S is the slope of the straight line from the linear transformation of the diffuse 

component and is equal to 𝐿𝑚𝑎𝑥
𝐷 𝐻𝑚𝑎𝑥

𝐷⁄ , and 𝐻𝑖
𝑆 is the HDR luminance associated with 

the specular component for each pixel i. Finally, we added 𝐿𝑚𝑎𝑥
𝐷  to these specular values, 

and the result was a tone-mapped image with linearly transformed diffuse shading and 

nonlinearly transformed specular highlights (Figure 2.4). 

The last step was to display the images using the eight-bit pixel values of the 

monitor. For this, we made a colour look-up table (CLUT) of luminance values 

corresponding to each eight-bit pixel value (0–255). Each luminance value in the tone-

mapped image was transformed into its corresponding CLUT value. 
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Figure 2.4. Transformation of HDR luminance values (x-axis) to tone-mapped 

luminance values (y-axis). 

 

Procedure 

Observers judged the lightness of flat target patches embedded in various 

surrounds via an asymmetric matching task (see Figure 2.1 for stimuli). In each trial, a 

target surface (14.88) was presented on the computer screen. Below the target surface 

was a smaller surface with an adjustable test patch (5.83). The surfaces were separated 

by 11.47 (centre to centre) and were presented against a black background. Observers 

were instructed to change the lightness of the flat central patch on the adjustable 

surface until it looked like it was the same lightness or painted with the same paint as 

the flat central patch on the target surface. 

In Experiment 1A, target surfaces consisted of a flat, matte, central target patch 

surrounded by one of four surround types: flat and matte (Figure 2.1A), flat and glossy 

(Figure 2.1B), rocky and matte (Figure 2.1C), or rocky and glossy (Figure 2.1D). For 

each of these conditions, there were six different surround albedos ranging from black 

to white (see Table 2.2). This produced 24 surround conditions in total. For these 24 

surround conditions, observers judged 13 to 15 test patch albedos. Table 2.2 shows 

specific test patch albedos included for each of the surround conditions, and Figure 2.5 

displays examples of these test patch albedos for surround reflectance 19.8%. Eleven of 
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the test patch albedos were standard for all surround conditions. We included a further 

two to four unique test patch albedos very close in lightness to each surround albedo. 

Two of these extra values were increments and two were decrements except for black 

surrounds, which had only two extra increments, and white surrounds, which had only 

two extra decrements. There were 344 conditions in total. Observers performed five 

repeats of each condition, resulting in 1,720 trials. 

The flat, glossy condition in Experiment 1A was included for completeness. 

However, due to the specific viewing angle of the camera in relation to the surface and 

the light source, rendering matte and glossy flat surfaces generated indistinguishable 

images, thus producing almost identical results. For this reason, the flat glossy condition 

was removed in Experiment 1B. Additionally, observers did not perform repeats for any 

condition, resulting in 258 trials. All other aspects of Experiment 1A and 1B were the 

same. 

Figure 2.1E shows the adjustable surface that was used for all conditions in 

Experiments 1, 2, and 4. The surround was a checkerboard surface with equal amounts 

of black (3% reflectance) and white (90% reflectance) bordering the central patch. The 

surface relief and gloss level of the surround were identical to that of the glossy, high-

relief (rocky) test surfaces. Observers were able to adjust the albedo of the central patch 

by moving a computer mouse left and right. They could choose from 201 pre-rendered 

Munsell values ranging from zero to 10 in equal increments on the Munsell scale. 
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Figure 2.5. Test patch albedos for surround reflectance 19.8%. Test patches are 

embedded in the flat matte surround (A), and the rocky matte surround (B). Test patches 

increase in lightness from left to right and from top to bottom. The green square indicates the 

test patch that has the same albedo as the surround. The two values immediately darker and 

lighter than the surround were unique to this surround albedo. The other 11 test patch values 

were common to all surrounds. See Table 2.2 for the specific test patch values. 
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Surround % 

reflectance 

Surround 

Munsell 

values 

Surround 

luminance 

min (cd/m2) 

Surround 

luminance 

max (cd/m2) 

Extra test patch % 

reflectance 

Extra test patch 

Munsell values 

Extra test patch luminance values 

(cd/m2) 

All – – – 
3, 5.2, 9, 13.7, 19.8, 27.2, 

36.2, 46.8, 59.1, 73.4, 90 

1.95, 2.75, 3.5, 4.25, 5, 

5.75, 6.5, 7.25, 8, 8.75, 9.5 

1.17, 2.25, 3.34, 5.13, 7.3, 9.83, 

13.06, 17.01, 21.34, 26.40, 32.49 

3 1.95 
M: 0.031 

G: 0.049 

M: 2.2 

G: 64.98 
3.39, 3.82 2.1, 2.25 1.17, 1.49 

9 3.5 
M: 0.11 

G: 0.12 

M: 6.63 

G: 64.98 
7.47, 8.21, 9.84, 10.7 3.2, 3.35, 3.65, 3.8 2.56, 2.92, 3.67, 4.02 

19.8 5 
M: 0.32 

G: 0.32 

M: 14.29 

G: 64.98 
17.2, 18.4, 21.1, 22.6 4.7, 4.85, 5.15, 5.3 6.21, 6.56, 7.65, 8.38 

36.2 6.5 
M: 0.65 

G: 0.65 

M: 26.5 

G: 64.98 
32.4, 34.3, 38.2, 40.2 6.2. 6.35, 6.65, 6.8 11.64, 12.34, 13.77, 14.52 

59.1 8 
M: 1.28 

G: 1.38 

M: 43.44 

G: 64.98 
53.9, 56.5, 61.8, 64.6 7.7, 7.85, 8.15, 8.3 19.57, 20.32, 22.4, 23.51 

90 9.5 
M: 2.63 

G: 2.75 

M: 61.03 

G: 64.98 
83.1, 86.5 9.2, 9.35 30.07, 31.51 

Table 2.2. Surround and centre patch reflectance and luminance values of the test surfaces used in the experiments. Notes: The first 

row shows the test patch values that were common to all surround types. The fifth column shows this in percentage reflectance, the sixth 

column shows this in Munsell values, and the seventh column shows this in luminance values. For all remaining rows, the first column contains 

the six reflectance values (percentage reflectance) used for the surrounds. The second column shows the values in column 1 transformed to 

the Munsell scale. The third and fourth columns show the luminance range of the surrounds (M = matte, G = glossy). The fifth column contains 

the extra two to four reflectance values (percentage reflectance) of the centre patches that were very close in lightness and unique to each 

surround. Two of these values were increments and two were decrements except for the black surround (3% reflectance), which contained only 

two extra increments, and the white surround (90% reflectance), which contained only two extra decrements. The sixth column shows the 

values in column 5 transformed to the Munsell scale, and the seventh column displays the luminance values of the test patches. 
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Results and discussion 

The results from Experiment 1 are presented in Figure 2.6, which shows the 

average data of all five observers from Experiment 1A (left column) and the average 

data of the 20 observers from Experiment 1B (right column). Three trials (out of 5,160) 

from Experiment 1B were excluded from analyses due to observers accidentally 

pressing the button to set test patch lightness before they had finished making 

adjustments. The data revealed that test patch lightness settings were affected by 

surround type. The different surface relief and gloss level conditions gave rise to 

different patterns in the data. These patterns will be discussed in relation to lightness 

constancy below. 

 

Results from the flat (low-relief) surround conditions 

Figure 2.6 shows that there is a distinct difference in the shape of the data curves 

between the flat and rocky surround conditions (compare the top two rows to the 

bottom two rows, respectively). The data curves for the rocky conditions are relatively 

linear whereas the data curves for the flat conditions exhibit a large “step” at which test 

patch albedo passes through that of the surround. This sharp lightness change between 

low-contrast increments and decrements reflects a phenomenon termed crispening by 

Takasaki (1966), and we retain this terminology here. To emphasize the size of the step 

for each of the data curves in Figure 2.6, difference scores were obtained by subtracting 

the lowest contrast decrement settings from the lowest contrast increment settings. 

These difference scores are plotted in Figure 2.7. A lower score indicates a smaller step 

and therefore less crispening. The darkest (Munsell value 1.95) and lightest (Munsell 

value 9.5) surround conditions were omitted because they contained only increments 

or only decrements, respectively. 
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Figure 2.6. Average data for Experiment 1A (left panels) and 1B (right panels). Each 

coloured data curve represents test patch settings for a different surround albedo condition. 

The legend shows the Munsell values of each surround. For flat surround conditions (top 

three panels), there was an increment–decrement “step” (crispening) as the test patch 

albedo passes through that of the surround. This step was absent in the rocky surround 

conditions (bottom four panels). Comparing the rocky surround data, lightness settings were 

more consistent for the glossy condition (last row) compared to the matte condition (third 

row). 

 

 

Figure 2.7. Increment minus decrement settings for Experiment 1A (A) and 1B (B). The 

horizontal dotted line represents the actual difference between increments and decrements. 

The solid bars show large increment–decrement steps for the flat surround conditions. The 

checked bars show that this step was eliminated in the rocky surround conditions (where 

surrounds contained complex mesostructure). 

 

When the surround was essentially homogeneous (low-relief condition), 

increments appeared much lighter than decrements: For observers in Experiment 1A, 

the lowest contrast increments appeared, on average, about 2 Munsell values lighter 

than the lowest contrast decrements (see Figure 2.7A, solid bars); for observers in 

Experiment 1B, the difference was about 1 Munsell value (see Figure 2.7B, solid bars). 

The actual (simulated) increment-decrement Munsell difference was 0.3, indicated by 

the horizontal dotted lines in Figure 2.7. The checked bars in Figure 2.7 show that 

difference scores from the rocky surround conditions lie around this line. From these 

difference scores it clear that, for both sets of observers, crispening was only induced by 
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the homogeneous flat surrounds. These observations were statistically verified for 

Experiment 1A by subjecting the difference scores for each surround albedo condition 

to a within-subjects two-way ANOVA with two levels of surface-relief (flat, rocky) and 

two levels of gloss (matte, glossy). F values and p values are displayed in Table 2.3. 

There was a main effect of surface relief for all surround albedo conditions. This 

confirms the observation that the increment-decrement step was larger when test 

patches were surrounded by homogeneous flat compared to rocky surrounds. There 

was one inconsistency for surround Munsell 8, at which the step seemed to be smaller 

for the flat glossy surround (Figure 2.7A). Indeed, for this condition, there was a main 

effect of gloss and an interaction between surface relief and gloss level. Follow-up tests5 

suggested that the flat glossy surround was not as effective in inducing crispening as the 

flat matte surround. However, Figure 2.6 (left column, second panel from the top, 

orange data points) clearly shows that there was strong crispening for this condition. 

Closer inspection of the stimuli revealed that, for surround Munsell 8, the lowest 

contrast decrement was practically indistinguishable from the flat glossy surround. 

Rendering the flat surrounds with gloss made the surfaces appear darker than their 

matte counterparts (because part of the light was reflected in the specular component 

that was not visible from the camera’s point of view). This slight darkening of the 

surround caused the lowest contrast decrement to appear close enough to the surround 

albedo that it was almost undetectable. Observers were therefore likely to match this 

test patch to the surround albedo, reducing the lowest contrast increment-decrement 

step. 

  

                                                           
 

5 Follow-up paired t-tests using Sidak-corrected alpha values of 0.0398 per test indicated that 

the matte surround induced a larger step than the glossy surround only for the low-relief 

condition, t(4) = 3.62, p = 0.02, not the high-relief condition, t(4) = -1.74, p = 0.16. Additionally, 

the low-relief surround induced a larger step than the high-relief surround only when the 

surround was matte, t(4) = 5.86, p = 0.004, not glossy, t(4) = 0.84, p = 0.45. Sidak-corrected 

alpha values were calculated as  = 1 – (1 – FWER)1/n = 1 – (1 – 0.15)1/4 = 0.0398, where FWER 

is the family-wise error-rate for the ANOVA. 
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Surround 3.5  Surround 5  Surround 6.5  Surround 8 

 F p  F p  F p  F p 

Relief 19.84 0.011*  27.01 0.007*  84.25 0.001*  41.21 0.003* 

Gloss 0.03 0.874  6.06 0.07  3.05 0.156  8.89 0.041* 

Interaction 0.1 0.768  1.79 0.251  0.16 0.706  15.96 0.016* 

Table 2.3. F values and p values for the increment–decrement difference scores of 

Experiment 1A. * p  0.05. For all tests, df = (1, 4). 

 

For Experiment 1B, t-tests using Sidak-corrected alpha values of 0.253 per test6 

were carried out to compare difference scores in the flat and rocky surround conditions 

(see Table 2.4 for t values, df, and p values). For three out of the four surround albedo 

conditions, flat surrounds induced a larger increment–decrement step than both the 

rocky matte and glossy surrounds (Figure 2.7B). The apparent lack of step for surround 

Munsell 8 can be explained by the probabilistic nature of detecting very low-contrast 

test patches (Ekroll & Faul, 2012b). It appears that observers in Experiment 1B were, on 

average, less likely to detect the low-contrast decrement compared to observers in 

Experiment 1A. 

 

Flat  vs.  Surround 3.5   Surround 5   Surround 6.5   Surround 8 

 df t p  df t p  df t p  df t p 

Rocky 

matte 
19 3.67 .002*  19 4.82 <.001*  19 3.98 .001*  19 2.04 .055 

Rocky 

glossy 
19 2.43 .0249*  19 6.18 <.001*  19 2.77 .012*  19 1.55 .14 

Table 2.4. t values, p values, and df comparing the increment-decrement difference 

scores between conditions in Experiment 1B. * p  0.05. 

 

The above findings raise the question of why there were differences in observers’ 

ability to detect low-contrast test patches between Experiment 1A and 1B. Additionally, 

there was a discrepancy in the amount of crispening observed (the size of the step) 

between Experiment 1A and 1B. The results of previous research suggest that these 

                                                           
 

6 Sidak-corrected alpha values were calculated as 1 = 1 – (1 – )1/n = 1 – (1 – 0.05)1/2 = 0.0253. 
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inconsistencies can be attributed to individual differences in how the stimuli are 

perceived. For example, Ekroll and Faul (2009) found large individual differences in the 

size of the crispening effect for coloured centre-surround displays. 

Figure 2.6 displays another quality about the data curves from the flat surround 

conditions, namely that there is an asymmetry between increment and decrement 

settings. The averaged data in Figure 2.6 (top two rows) reveals that increment settings 

were essentially independent of the surround albedo. In contradistinction, decrement 

settings were more affected by the surround albedo, illustrated by the greater spread in 

the data points for each test patch. Asymmetries between increment and decrement 

settings have been found previously in the brightness literature (e.g., Heinemann, 

1955). Additionally, for test patches on coloured surrounds, colour induction from the 

surround has been found to be much stronger for decrements than increments (Bäuml, 

2001; Helson, 1938; Helson & Michels, 1948). 

The most notable result was that crispening was completely eliminated when 

surrounds contained shading and shadow information indicative of surface-relief 

(bottom two rows in Figure 2.6). This implies a qualitative difference in how the test 

patch was perceived when embedded in flat compared to rocky surrounds. In Chapter 4 

we further investigate the crispening effect seen in the flat surround conditions. We 

address a growing view in the literature that lightness perception may contain more 

than one dimension (Ekroll & Faul, 2013; Logvinenko & Maloney, 2006; Vladusich, 

2012, 2013; Vladusich et al., 2007) and investigate the role of mid-level perceptual 

phenomena, such as transparency, influencing the appearance of test patches embedded 

in homogeneous surrounds (Ekroll & Faul, 2013). This idea may also shed some light on 

the increment-decrement asymmetry mentioned above. 

 

Results from the rocky (high-relief) surround conditions 

The above results suggested a qualitative difference in how the test patch was 

perceived when embedded in rocky surrounds that contained shading information 

compared to flat surrounds that did not contain this information. For both matte and 

glossy rocky conditions, there was a tendency for test patches on darker surrounds to 

appear lighter than those same test patches on lighter surrounds. However, settings 
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from the glossy condition seem more compressed (more consistent) than those from 

the matte condition (compare the bottom and second-bottom rows in Figure 2.6, 

respectively). For these rocky conditions, lightness constancy for a given test patch 

tended to be better when surrounds were glossy compared to matte. 

The difference in lightness constancy (vertical spread) between rocky matte and 

glossy data points was statistically reliable. For each of the 11 test patch values common 

to all surrounds (see Table 2.2), the lightness settings in one surround condition were 

subtracted from the lightness settings in the adjacent darker surround albedo condition. 

These difference scores were averaged for all 11 test patch values and plotted in Figure 

2.8. For this and subsequent experiments in this chapter, a binomial sign test was used 

to compute the likelihood of obtaining k or more instances in which the observers’ 

performance in the glossy condition was more consistent than in the matte condition 

(11 pairs of data points per subject). The results confirmed that, for rocky conditions, 

lightness constancy was significantly better when test patches were surrounded by 

glossy compared to matte surfaces, p  0.001 for Experiment 1A, p = 0.006 for 

Experiment 1B. This implies that surfaces with gloss information provided the visual 

system with additional cues that could be used to improve lightness constancy. 

The amount of lightness constancy exhibited in the data also depended on the test-

patch albedo. However, this effect of test-patch albedo on lightness constancy differed 

between observers in Experiment 1A and 1B. Despite these differences between 

observers, Figure 2.6 (third row from the top) and Figure 2.8 demonstrate a general 

trend, at least for the rocky matte condition: Lightness constancy was better for lighter 

compared to darker test patches. This is illustrated by the negatively sloped matte data 

curves in Figure 2.8. This is likely to be caused by lighter test patches substantially 

increasing the range of luminance values in most of the displays. 
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Figure 2.8. Average difference scores for the rocky conditions of Experiment 1A (A) 

and 1B (B). Average difference scores were calculated in the following way: For each of the 

11 test patch values common to all surrounds (see Table 2.2), the lightness settings in one 

surround condition were subtracted from the lightness settings in the adjacent darker 

surround albedo condition. The plotted values are the average of these difference scores for 

each of the 11 test patch values. Lightness constancy was better for test patches embedded 

in glossy (open squares) compared to matte (closed circles) surrounds. 

 

One last point to note is observers’ settings in relation to ground truth (solid black 

diagonal line in Figure 2.6). For the rocky matte data points, there was a tendency for 

test patches on lighter surrounds to be more veridical to those on darker surrounds. 

One reason for this shift might be the high range of luminance values in the adjustable 

patch’s surround. Matte surrounds with a lighter albedo also had a greater range of 

luminance values (due to light diffuse shading and dark shadows) compared to matte 

surrounds with lower albedo (which had dark diffuse shading and dark shadows). This 

made the matches to our adjustable patch (which was surrounded by both black and 

white surfaces) more symmetric when displays are lighter, leading to more veridical 

matches. 

In Experiment 1A and 1B we found evidence suggesting that the visual system 

used image cues generated by rocky and glossy surfaces when estimating test patch 

lightness. The presence of these cues led to better lightness constancy compared to 

when these cues were absent: Crispening was eliminated when surrounds contained 
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complex mesostructure; for rocky surfaces, lightness judgments were more consistent 

when surrounds were glossy compared to matte. Note that the rocky matte data points 

exhibited similar overall spread to the flat surround displays (i.e. a given test patch 

embedded in the lightest and darkest surround appeared similarly different for the two 

conditions). In this sense lightness constancy appeared to be similar for these two 

conditions. However, when focusing on data points near the surround value, lightness 

constancy was revealed to be better in the rocky displays. 

One possible explanation of the above results is that the specific luminance 

patterns generated by naturalistic surfaces may serve as cues to help the visual system 

decompose luminance values into contributions of lightness and illumination. 

Advocates of EIMs have proposed that these cues provide the visual system with 

information about the light field, which is then transferred to other parts of the scene 

that lack this information, e.g. the flat test patch. However, there are a number of other 

possible explanations, which will be systematically addressed in the remaining 

experiments of Chapter 1. One alternative explanation is that the improved lightness 

constancy for glossy conditions could have been caused by the greater range and/or 

variation of luminance values in the image compared to matte conditions (this has been 

referred to as articulation in the literature; e.g. see Gilchrist et al., 1999). Experiment 2 

was designed to directly test this possibility. Variegated centre-surround stimuli were 

created in a way that eliminated surface structure but retained the range and variation 

of luminance values in the image. Another possibility relates to the similarity between 

the test and matching displays, where more similar test and matching displays might 

lead to more symmetric matches. This will be investigated in Experiment 3. Finally, 

Experiment 4 tests the possibility that the specific contrast and luminance distributions 

in the rocky surrounds are responsible for the lightness effects in Experiment 1. 
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Experiment 2A and 2B: Variegated Surrounds 

Experiment 2 tested whether surround “articulation” (luminance range and/or 

variation) was responsible for the improved lightness constancy exhibited with the 

rocky surrounds in Experiment 1. In Experiment 2, equivalent two-dimensional flat 

surfaces with variegated surrounds were created for each rocky surface (Figure 2.9). 

These variegated surfaces had very similar luminance histograms to the rocky surfaces 

but lacked information about surface structure, shading, specularity, or illuminance 

flow. If the specific luminance patterns generated by naturalistic surfaces are important 

in lightness constancy, then lightness constancy should be worse for the variegated 

surfaces than for comparable rocky surfaces. If surface structure is not important, and it 

is only the amount of articulation that is crucial, then no difference in lightness 

constancy between rocky and variegated conditions should be observed. 

 

 

Figure 2.9. Examples of variegated centre-surround stimuli used in Experiment 2. The 

surrounds shown here were created from the rocky matte and glossy displays from 

Experiment 1 (19.8% reflectance). 
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Methods 

Observers 

Similar to Experiment 1, Experiment 2 had two parts: Observers DC and RS from 

Experiment 1A participated in Experiment 2A, and 20 first-year psychology students 

participated in Experiment 2B (none of whom had participated in the first experiment). 

 

Apparatus and stimuli 

The task was the same as in Experiment 1 as was stimulus presentation. Two-

dimensional variegated surrounds were created in the following way for each gloss 

level and each surround albedo condition (see Figure 2.9). First, the relative frequencies 

of each luminance value in the rocky surround were obtained. There were 256 possible 

luminance values corresponding to each eight-bit pixel value of the monitor. These 

relative values were used to create a variegated surround consisting of 1,280 squares 

(36 × 36 minus 16 squares for the central patch). The number of squares of each 

luminance was weighted according to the relative luminance frequencies from the rocky 

surround. This resulted in very similar luminance frequency histograms for 

corresponding variegated and rocky surrounds. In this sense, the corresponding 

variegated and rocky surrounds are equivalent, but variations in shading and gloss in 

the rendered rocky stimuli appear as part of a random noise pattern in the variegated 

images. Because the rocky surround was made up of 799,515 pixels and the variegated 

surround contained only 1,280 squares, some luminance values in the rocky surround 

did not have enough pixels to make up one square in the variegated surround. If this 

occurred, we ensured that the variegated surround contained at least one square with 

the highest luminance value and at least one square with the lowest luminance value 

from the equivalent rocky surround. We also ensured the regions immediately 

surrounding the central patch in the variegated and rocky stimuli were matched in 

average luminance (the distance of one square away from the central patch). 

There were very slight luminance variations within the test patches embedded in 

rocky surrounds, caused by interreflections. Test patch values for the variegated stimuli 

were created by averaging these luminance values. 
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Figure 2.10. Results of Experiment 2. Left panels: average data for observers DC and RS 

from Experiment 2A. Right panels: average data for Experiment 2B. See Figure 2.6 caption 

for details about the data curves and legend. Top panels: lightness settings for the 

variegated matte equivalent condition. Bottom panels: settings for the variegated glossy 

equivalent condition. 
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Figure 2.11. Difference scores from Experiment 2. Left panels: average difference scores 

for Experiment 2A (top) and 2B (bottom). See Figure 2.8 caption and main body text for an 

explanation of how these scores were calculated. Right panels: standard deviation scores for 

Experiment 2A (top) and 2B (bottom), calculated as the standard deviation of test patch 

settings for different surround albedo conditions. See main body text for a description of 

effects. 
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Procedure 

The presentation of trials and instructions were the same as in Experiment 1. 

There were two surround types: variegated surrounds that were equivalent to the 

matte surrounds in Experiment 1 (“matte equivalent”) and variegated surrounds that 

were equivalent to the glossy surrounds in Experiment 1 (“glossy equivalent”). The 

surround albedo conditions and test patch conditions were the same as in Experiment 

1, leading to 172 trials in total. 

 

Results and discussion 

The average results of Experiment 2 are presented in Figure 2.10. Two trials from 

Experiment 2B were excluded from analyses due to observers making premature 

lightness judgments (see Experiment 1 results). The data reveal that test patch lightness 

settings were affected by surround type. To more clearly compare lightness settings, 

Figure 2.11 (left panels) plots the average difference scores between adjacent albedo 

conditions (the same method was used as in Experiment 1). A smaller difference score 

indicates more consistent settings and therefore better lightness constancy. We also 

plotted the standard deviation of test patch settings for different surround albedo 

conditions (Figure 2.11, right panels) to demonstrate that the effects reported are not a 

result of the specific method chosen to quantify lightness constancy. 

Binomial sign tests were carried out on the average difference scores and standard 

deviation scores.7 The results of Experiment 2A showed that when surrounds were 

variegated, observers exhibited better lightness constancy when there was greater 

articulation (luminance variation/range) in the surround (glossy equivalent condition) 

compared to when there was less articulation (matte equivalent condition), p < 0.001 

(Figure 2.11, top panels; compare blue filled circles to blue open squares). However, this 

result was not replicated in Experiment 2B, p = 0.5, indicating that greater surround 

articulation may not influence lightness constancy for all observers (Figure 2.11, bottom 

                                                           
 

7 For simplicity, only p values for tests on the average difference scores are reported. However, 

the results are identical for standard deviation scores. 
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panels). The results from both sets of observers confirmed that lightness constancy was 

better when test patches were embedded in rocky compared to variegated surrounds, 

at least for the gloss conditions, p < 0.001 (Experiment 2A, Figure 2.11, top panels), p = 

0.006 (Experiment 2B, Figure 2.11, bottom panels; compare open blue squares to open 

red squares). This suggests that rocky surfaces containing shading and specular 

reflections provided additional cues over and above luminance range and variation that 

the visual system used to improve lightness constancy. The results were not as clear for 

the matte condition. Observers from Experiment 2A exhibited better lightness 

constancy when test patches were embedded in rocky compared to variegated 

surrounds, p < 0.001 (Figure 2.11, top panel). However, the same was not true for 

observers in Experiment 2B, p = 0.50 (Figure 2.11, bottom panel; compare filled blue 

circles to filled red circles). 

The results of Experiment 2 suggest that the amount of surround articulation 

(luminance variation/range) in the rocky conditions cannot account for the results in 

Experiment 1. The specific luminance patterns generated by shading and shadow 

contrast may be important for lightness constancy by providing the visual system with 

some information about surface albedo (i.e., lighter surfaces reflect more light to “fill in” 

shadows). However, the real advantage of surfaces over variegated surrounds appears 

to be derived from the specular highlights. This fits with an illumination-estimation 

account of the data. Light reflected from the diffuse component of a surface depends on 

both the (direct and indirect) light sources and the surface albedo, resulting in 

variations in shadow and shading information between surfaces. Alternatively, the light 

reflected from the specular component depends primarily on the illumination intensity, 

causing specular highlights to remain constant in their appearance between surfaces. 

The visual system may be able to use this constant cue across conditions to estimate the 

direction and intensity of the illumination from specular highlights, better constraining 

lightness estimates. 

Although an illumination-estimation account fits nicely with the data from 

Experiment 2, there are two other possible explanations for the difference in lightness 

constancy found between the rocky glossy and variegated glossy equivalent conditions. 

In Experiments 1 and 2, the adjustable patch was surrounded by a rocky glossy surface 

with black and white checks (Figure 2.1E). We chose the specific pattern and material of 



56 
 

the surround to make the test patch appear as surface-like as possible. Surface 

properties, such as lightness, have little meaning for flat two-dimensional stimuli, and 

observers often cannot easily differentiate between lightness and brightness (Blakeslee 

et al., 2008). Although the pattern and material of the surround made the adjustable 

patch appear surface-like, this resulted in observers’ matches being more symmetric in 

the rocky glossy trials compared to other trials, especially in the flat surround condition 

in Experiment 1 and the variegated condition in Experiment 2. This suggests that the 

better constancy exhibited in the glossy trials may have been due to the similarity in the 

match and test surrounds. Experiment 3 addresses this possibility by replicating 

Experiments 1 and 2 but replacing the surround of the rocky glossy adjustable patch 

with a two-dimensional matte surround. 

Another alternative explanation of the pattern of data from Experiments 1 and 2 

appeals to low-level mechanisms. Although the variegated and rocky surrounds were 

matched in terms of their luminance histograms, they differed in their contrast and 

luminance distributions across space and scale. For example, the brightest luminance 

values in the rocky surround (the specular highlights) were distributed across the 

entire surround (see Figure 2.1D). However, Figure 2.9 illustrates that the brightest 

luminance values from the glossy equivalent variegated surround are contained in a 

single square. Furthermore, the specular highlights in the rocky surround occurred near 

points at which the diffuse shading gradient was brightest (Marlow et al., 2011). 

However, for the variegated surround, the contrast of adjacent squares was random. 

Experiment 4 directly tests the possibility that the specific contrast and luminance 

distributions in the rocky surrounds played a key role in affecting lightness perception 

in Experiments 1 and 2. 
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Experiment 3: Flat, Matte Adjustable Surface 

Experiment 3 addresses whether the specific surround of the adjustable patch 

caused the pattern of results in Experiments 1 and 2 due to more symmetrical matching 

between the rocky glossy test and adjustable displays. 

 

Methods 

Observers 

Forty first-year psychology students participated in Experiment 3. All observers 

were naïve and had not participated in any of the previous experiments. Twenty 

observers were assigned to the homogeneous (flat matte) and the matte and glossy 

rocky conditions of Experiment 1B. The other 20 observers were assigned to the matte 

equivalent and glossy equivalent variegated conditions of Experiment 2. 

 

Apparatus, stimuli, and procedure 

The task and conditions were identical to Experiments 1B and 2 except that the 

adjustable patch was rendered with a two-dimensional, matte checkerboard surround 

(Figure 2.1F). From now on the displays with flat, matte surrounds will be referred to as 

homogeneous displays, as there is no longer a need to differentiate this from the flat 

glossy condition in Experiment 1. 
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Figure 2.12. Average data for Experiment 3. See Figure 2.6 caption for details about the 

data curves and legend. Top left: adjustable patch used for all conditions in Experiment 3. 

Top right: lightness settings for the homogeneous (flat) surround condition. Middle left: 

lightness settings for the variegated matte equivalent condition. Bottom left: settings for the 

variegated glossy equivalent condition. Middle right: settings for the rocky matte condition. 

Bottom right: settings for the rocky glossy condition. 

 

Results and discussion 

The results of Experiment 3 are presented in Figure 2.12. Two trials were excluded from 

analyses due to observers making premature lightness judgments (see Experiment 1 

results). The data reveal that test patch lightness settings were affected by each 

surround in the same way as in Experiments 1 and 2. Figure 2.12 illustrates that 

crispening occurred in the homogeneous (flat matte) surround conditions (top right 

panel) but not in the rocky conditions (middle right and bottom right panels). As in 

Experiment 1, increment–decrement difference scores were obtained to emphasize the 

size of the step for each of the homogeneous and rocky conditions (see Figure 2.13). 

Recall that a lower score indicates a smaller step and therefore less crispening. 

 

 

Figure 2.13. Increment minus decrement settings for Experiment 3. The horizontal 

dotted line represents the actual difference between increments and decrements. 

Replicating Experiment 1, large increment-decrement steps are present in the data from the 

homogeneous displays (solid bars). This step is eliminated when surrounds contain complex 

mesostructure (rocky conditions, checked bars). 
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T-tests using Sidak-corrected alpha values of .0253 per test were carried out to 

compare difference scores in the rocky and flat surround conditions (see Table 2.5 for t 

values, df, and p values). The results replicated those of Experiment 1B except that the 

comparisons for surround Munsell value 5 were not significant (see Table 2.5). 

Nonlinearities diagnostic of crispening were present for the homogeneous conditions 

(Figure 2.12, top right panel). Therefore, as in previous experiments, this slight 

discrepancy in results can be attributed to individual differences in observers’ ability to 

detect very low contrast test patches. 

 

Flat vs. Surround 3.5  Surround 5  Surround 6.5  Surround 8 

 df t p  df t p  df t p  df t p 

Rocky 

matte 
19 4.52 <.001*  19 1.79 .09  19 2.47 .02*  19 2.68 .02* 

Rocky 

glossy 
19 4.57 <.001*  19 1.97 .06  19 3.39 .003*  19 0.80 .44 

Table 2.5. t values, p values, and df for the increment-decrement difference scores of 

Experiment 3. * p < 0.05, 

 

The results from the rocky and variegated conditions were also replicated when 

the flat adjustable patch was used, which can be seen by the average difference and 

standard deviation scores in Figure 2.14 (calculated the same way as in Experiments 1 

and 2). Binomial sign tests on these scores revealed that for the rocky condition, 

lightness constancy is better when test patches are embedded in glossy compared to 

matte surrounds, p = 0.006. However, as in Experiment 2B, this is not the case for the 

variegated conditions. Importantly, for the glossy condition, lightness constancy was 

better when test patches were embedded in rocky compared to variegated surrounds, p 

< 0.001. This was not the case for the matte condition, p = 0.5. These results suggest that 

the effects in Experiments 1 and 2 were not caused by the symmetry between the test 

and adjustable surfaces. 
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Figure 2.14. Average difference scores (left panel) and standard deviation scores 

(right panel) for Experiment 3. See Figure 2.8 caption and main body text for an 

explanation of these scores. See main body text for a description of effects. 
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Experiment 4: Phase-Scrambled Surrounds 

Experiments 1 and 2 demonstrated that the luminance patterns generated by 

specular highlights improved lightness constancy for flat test patches embedded in 

rocky surrounds. Experiment 3 demonstrated that this improved lightness constancy 

was not simply the consequence of the test and match patches having similar surrounds. 

Experiment 4 aims to determine whether this improvement in lightness constancy was 

achieved through an improvement in the visual system’s ability to represent the light 

field or whether a low-level explanation involving contrast and luminance distributions 

across space and scale can account for the data. In Experiment 4, the equivalent control 

surrounds were phase-scrambled versions of the rocky surrounds (see Figure 2.15). 

Scrambling the phase spectrum information ensured that the rocky and control 

surrounds were matched not only in terms of their luminance histograms, but also in 

terms of their spatial frequency content. The phase-scrambled surrounds tend to evoke 

impressions of grainy textures, which appear to be perceived predominantly as 

variations in pigment (particularly the specular highlights). If a representation of the 

light field via shading patterns and/or specular highlights is crucial for lightness 

constancy, then observers should exhibit better lightness constancy when test patches 

are embedded in rocky surrounds. Alternatively, if the enhanced lightness constancy of 

the glossy surfaces arose from the distribution of contrasts across spatial scales, no 

difference in lightness constancy between the two conditions should be observed. 

 

Methods 

Observers 

Twenty first-year psychology students participated in Experiment 4. All observers 

were naïve and had not participated in any of the previous experiments. 

 

Apparatus and stimuli 

The task was the same as in Experiments 1 and 2. Phase-scrambled surrounds 

were created by Fourier transforming the rocky images and replacing the phase 
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spectrum information with that of white noise. Thus, phase-scrambled and rocky 

surrounds had equated pixel luminance histograms and power spectrums. As in 

Experiment 2, the regions immediately surrounding the central patch in the rocky and 

phase-scrambled stimuli were matched in average luminance. 

 

Procedure 

The presentation of trials and instructions were the same as in Experiment 1 and 

2. There were four surround-type conditions: rocky matte, rocky glossy, phase-

scrambled matte equivalent, and phase-scrambled glossy equivalent. The surround 

albedo conditions were the same as in the previous experiments. However, observers 

only performed lightness judgments on the 11 test patches common to all the surround 

types in Experiment 1 (see Table 2.2), i.e., no very low-contrast test patches were used. 

This resulted in 264 trials for each observer. 

 

 

Figure 2.15. Examples of phase-scrambled centre-surround stimuli used in 

Experiment 4. The surrounds shown here were created from the rocky matte and glossy 

displays from Experiment 1 (19.8% reflectance). 
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Results and discussion 

The results of Experiment 4 are presented in Figure 2.16. The data reveal that test 

patch lightness settings differed between matte and glossy conditions, replicating the 

results of Experiment 1. However, lightness constancy did not differ between rocky and 

phase-scrambled surround conditions. Figure 2.17 plots the average difference scores 

and the standard deviation between adjacent surround albedo conditions, calculated 

the same way as in Experiments 1 and 2. A lower score indicates better lightness 

constancy. 

Binomial sign tests were carried out on the average difference scores and standard 

deviation scores. The results showed that regardless of whether surrounds were rocky 

or phase-scrambled, observers exhibited better lightness constancy in the glossy 

compared to the matte condition, p = 0.006 (rocky condition), p < 0.001 (phase-

scrambled condition; Figure 2.17). The results also showed no difference in lightness 

constancy between the rocky and phase-scrambled conditions, p = 0.11 (matte 

condition), p = 0.27 (glossy condition). This suggests that, for these types of stimuli at 

least, the visual system was not using information about the light field generated by 

specular reflections to improve lightness constancy for glossy surfaces; observers 

performed just as well when control surfaces were created with the same contrast and 

luminance distributions as naturalistic rocky surfaces. 

The results of this experiment also replicate the trends observed in the matte 

condition of Experiment 1: For both rocky and phase-scrambled conditions, there was a 

tendency for lighter test patches to be matched more consistently than darker test 

patches (indicated by the negative slopes of the matte data curves [closed circles] in 

Figure 2.17). Furthermore, as in Experiment 1, data curves in the matte condition are 

shifted vertically up in relation to ground truth (Figure 2.16, top row, compare data 

curves to the diagonal solid black line). 
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Figure 2.16. Average data for Experiment 4. See Figure 2.6 caption for details about the 

data curves and legend. Top left: settings for the rocky matte condition. Bottom left: settings 

for the rocky glossy condition. Top right: lightness settings for the phase-scrambled matte 

equivalent condition. Bottom right: settings for the phase-scrambled glossy equivalent 

condition. See Figure 2.17 caption and main body text for a description of effects. 
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Figure 2.17. Average difference scores (left panel) and standard deviation scores 

(right panel) for Experiment 4. See Figure 2.8 caption and main body text for an 

explanation of these scores. Lightness constancy was better in the glossy (open squares) 

compared to matte (closed circles) conditions. However, there was no difference in lightness 

constancy between the rocky (red data points) and phase-scrambled (blue data points) 

conditions. 

 

Concluding Thoughts 

The first aim of the present chapter was to investigate whether the visual system 

uses cues to the illuminant created by complex mesostructure and specular highlights to 

improve lightness constancy of an embedded flat, matte test patch. The results support 

the hypothesis that more image cues lead to better lightness constancy. Low contrast 

test patches surrounded by rocky surfaces with complex mesostructure were judged 

more consistently than those with homogeneous surrounds, which exhibited a 

nonlinear “step” (crispening) at albedo values close to the surround. However, due to 

the qualitative difference in the data curves, it is difficult to directly compare lightness 

constancy between the rocky and homogeneous displays. The results from the matte 

and glossy rocky displays are more comparable. The results showed that test patches 

were judged more consistently when the surround contained specular highlights 

(glossy surfaces) compared to when these were absent (matte surfaces). 
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The second aim of this chapter was to tease apart mid-level and low-level 

contributions to the above lightness effects. From the data presented so far it is unclear 

what mechanisms drove the crispening effect in the homogeneous displays. This is 

investigated in Chapter 4. The control experiments tested whether the benefits of 

shading and specular reflections in the rocky displays could be attributed to the range 

and/or number of luminance values in the surround, the choice in matching patch 

surround, or differences in the energy across different spatial scales. Contrary to the 

hypothesis that originally motivated these experiments, the results do not provide 

support for explanations of lightness perception based on illumination estimation. Our 

results suggest that, when computing test patch lightness, there was no benefit in 

observers’ lightness judgments for stimuli that contained surface relief, shadows, 

shading, and specular highlights. Rather, a low-level explanation involving contrast and 

luminance distributions across space and scale appears to be sufficient in explaining the 

pattern of results described above. However, at least two other factors need to be 

considered when interpreting the similar results between the rocky displays and the 

phase-scrambled controls, which are discussed below and investigated further in 

Chapter 3. 

It is possible that in the present experiments observers matched the test patches 

on perceived luminance (brightness) rather than lightness. All stimuli were embedded 

in the same light field, and while there were slight differences in luminance for a given 

test patch due to secondary reflections from the backgrounds, these effects were 

negligible. Consequently, a test patch of a given albedo had the same luminance 

regardless of background (i.e. test patch albedo co-varied with luminance), meaning 

that observers could have performed the task by matching perceived brightness, not 

lightness. Previous research has shown that in some cases lightness and brightness 

matches do not differ when illumination is homogeneous (e.g. Blakeslee & McCourt, 

2012), and despite variations in illumination due to vignetting and interreflections, 

globally our displays were illuminated uniformly (i.e., there were no illumination 

boundaries or gradients). Therefore, the similarity in results between rocky and phase-

scrambled displays might reflect low-level mechanisms responsible for brightness 

computations within a display under homogeneous illumination. Such mechanisms may 

be inadequate explain lightness constancy under changes in illumination. 
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Additionally, it is possible that in the present experiments rendering the surfaces 

with two interreflections was not sufficient to perceptually differentiate rocky surfaces 

with different albedo. We reasoned that two interreflections was sufficient because it is 

more than is usually used in lightness experiments with computer-simulated 3D scenes, 

which typically have at most 1 interreflection. However, two interreflections may not 

have generated perceptually detectable differences in the contrast of shading and 

shadows between surfaces of different albedo. Therefore the extent to which shadows 

are “filled in” may not have been available as a cue to differentiate the rocky surfaces. 

This is suggested by the results of Experiments 1 and 3, where aspects of the rocky 

matte data were similar to the data from homogeneous displays. Specifically, for test 

patches that were decrements (i.e. darker than the surround) lightness settings 

appeared to be just as variable for rocky matte displays as homogeneous displays (e.g. 

compare the top to the 2nd bottom data panels of Figure 2.6). Note that this does not 

include test patches low in contrast and thus affected by crispening in the homogeneous 

surrounds. This comparison suggests that, while adding mesostructure eliminated 

crispening, the number of interreflections rendered may not have generated sufficient 

perceptual differences in shading between surrounds of different albedo. If observers 

were unable to use image cues generated by the mesostructure interacting with light to 

differentiate the surrounds, then lightness constancy would not be expected to differ 

between rocky surfaces and phase-scrambled controls. To address the above two issues, 

Chapter 3 investigates lightness constancy under changing illumination, and how this is 

affected by differences in the number of interreflections rendered in the displays. 
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Chapter 3. The Role of Interreflections on Lightness 

Perception under Changing Illumination Level 

 

Chapter 3 explores whether low-level mechanisms can sufficiently explain 

lightness perception of flat test patches embedded in rocky surrounds when 

illumination level is varied. When the level of illumination is varied (i.e. from bright to 

dim), the luminance of a test patch also varies. Therefore it is possible to determine 

whether observers are making reflectance matches (their lightness judgments remain 

constant despite changing illumination) or luminance matches (their lightness 

judgments vary with illumination level). Another aim of Chapter 3 is to determine 

whether the number of interreflections rendered in the stimuli used in Chapter 2 

provided the visual system with sufficient information to differentiate the lightness of 

surfaces based on the contrast of shadows in an image. 

 

Experiment 5A and 5B: Lightness Perception of Complex Surfaces under 

Changing Illumination Level and Number of Interreflections 

Experiment 5 had two parts, Experiment 5A and 5B. In Experiment 5A observers 

performed lightness judgments on central test patches embedded in various surrounds. 

This was similar to the experiments in Chapter 2. Surrounds were matte or glossy 

surfaces with complex mesostructure rendered under either “bright” (high) or “dim” 

(low) illumination. Phase-scrambled control displays were created for each condition 

(see methods) and compared to the rocky displays. We predicted that lightness 

judgements under changing illumination would be more consistent for test patches 

surrounded by rocky surfaces compared to phase-scrambled controls if mid-level 

mechanisms involved in the processing of surface structure affect perceived lightness in 

the rocky displays. Alternatively, lightness constancy should not differ between rocky 

and control surfaces if perceived lightness in the rocky displays can be explained by 

low-level distributions of luminance and contrast across different spatial scales. 
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The number of interreflections rendered in the displays was also manipulated to 

determine whether perceived lightness varies as a function of the number of 

interreflections. With this design it was possible determine the minimum number of 

interreflections (if any) required for perceived lightness to differ between the rocky and 

phase-scrambled conditions. We hypothesised that lightness judgments would differ 

between the rocky and scrambled stimuli after a certain number of interreflections if 

surface structure is important for lightness perception (as long as surfaces are rendered 

with enough interreflections). This would suggest that the filling in (or reduced 

contrast) of shading can be used to differentiate the lightness of surrounds with 

different albedos. However, lightness judgments should be similar between rocky and 

scrambled stimuli regardless of the number of interreflections if low-level mechanisms 

are sufficient to explain lightness effects in the rocky displays. 

Previous studies have reported that the lightness of a surface is affected by the 

perceived lightness of the background rather than its physical luminance (Arend et al., 

1971; Evans, 1948; Gelb, 1932; Gilchrist, 1988; Gilchrist et al., 1983; Hsia, 1943; Jaensch 

& Müller, 1920; Landauer & Rodger, 1964; Oyama, 1968). Experiment 5B tested how 

observers perceived the lightness of the surrounds in Experiment 5A to better 

understand the lightness effects observed in Experiment 5A. 

 

Methods 

Observers 

Twenty-five first-year psychology students participated in Experiment 5A. One 

observer was excluded from analyses (see results and discussion section), leaving 24 

observers in total. 

Five observers participated in Experiment 5B. Four of them were observers AS, 

DC, RS and KT8 from Experiment 1, and the fifth was observer KD who had not 

                                                           
 

8 Due to a bug in the program, observer KT did not complete all three repeats for each condition 

(he completed 123 out of 192 trials). This bug was subsequently fixed for all other observers. 
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participated in any previous experiments. The participants who were not part of the lab 

(DC, RS, and KD) were compensated $20 for the experiment, which lasted 1 hour. 
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Figure 3.1. Examples of difference maps between images rendered with 1, 2, 3 and 4 

interreflections, for the matte white (A) and grey (B) surrounds rendered under bright 

illumination. The bottom row of images in (A) and (B) shows the appearance of surfaces 

when rendered with different numbers of interreflections. The top row shows the difference 

images, with whiter areas indicating a larger difference between the images being 

compared, and mid-grey areas indicating no difference. Adding interreflections to the white 

displays produced much larger physical differences in shading contrast compared to the 

grey displays. 

 

Apparatus and stimuli 

The task, stimulus construction, and presentation were the same as in Chapter 2 

experiments. The adjustable display was the same display used in Experiments 1, 2, and 

4 (i.e. a black and white checkerboard rendered with high relief with a glossy surface 

reflectance, Figure 2.1E). The test displays contained rocky surfaces that varied in 

(simulated) albedo and gloss level, with flat matte centres that varied in albedo. Stimuli 

were rendered under the “grove” illumination field (Debevec, 1998; Figure 2.3), either 

under “bright” (high) illumination, which was the same illumination level used in 

Chapter 2, or under “dim” (low) illumination, which was 25% of the bright illumination. 

Surfaces were rendered with 1, 2, 3, or 4 interreflections. The surfaces were initially 

rendered with up to 8 interreflections. However, no physical differences were found 

between images rendered with 4 or more interreflections, so displays with more than 4 

interreflections were not used in the experiment. Figure 3.1 shows examples of 

difference maps between images rendered with different numbers of interreflections 

for displays with white (90% reflectance; Figure 3.1A) and grey (19.8% reflectance; 

Figure 3.1B) surrounds. These were the two surround albedo values included in the 

experiment. The white surround was chosen to provide the optimal conditions for 

interreflections to modulate shading contrast (see Figure 3.1A). White surfaces reflect 

more incident light, which indirectly illuminates other parts of the surface and fills in 

shadows. Figure 3.1A demonstrates how increasing the number of interreflections in 

the white surround visibly reduced the contrast of the shading. The grey surround was 

chosen as a comparison to white for two reasons. First, the effect of rendering a greater 

number of interreflections for darker surfaces became negligible very quickly. The 

difference maps in Figure 3.1B show that even for 19.8% reflectance, adding 
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interreflections did not affect the contrast of shadows much. Second, when darker 

surfaces were rendered under dim illumination, the resulting image was so dark that it 

was difficult to perceive surface structure. 

An additional advantage of the chosen surround albedos was that the image of the 

grey surface under bright illumination was almost identical to the image of the white 

surface under dim illumination rendered with one interreflection (compare the top two 

images in Figure 3.2A). Consequently, we could directly compare how the number of 

interreflections between the two surrounds influenced areas of shading and shadows. 

Figure 3.2B plots luminance profiles at different cross sections of the images in Figure 

3.2A. In these plots, areas of surface shading are indicated by dips in the luminance 

profiles. Greater dips mean higher contrast shading in that location. The first column of 

graphs in Figure 3.2B reveals very similar luminance profiles for the white and grey 

images rendered with 1 interreflection. The second column of graphs plots the 

luminance profiles of the same surfaces rendered with 4 interreflections. For the white 

surfaces (orange line), the largest areas of shading contrast were “filled in” by the 

additional interreflections, substantially reducing the contrast of the shading (and also 

increasing the mean luminance of the surround). The luminance profiles for the grey 

surfaces (blue line) remained relatively unchanged. These plots, as well as the 

difference maps in Figure 3.1, demonstrate the physical differences in shading contrast 

between images of white and grey surfaces rendered with 2 or more interreflections, 

which could theoretically provide observers with information about surface albedo. 

Figure 3.3 shows examples of phase-scrambled stimuli for each interreflection 

condition. Phase-scrambled stimuli were created in the same way as in Experiment 4, 

but with one difference. Instead of a circular test patch, the test patch was the same 

shape as in the rocky surfaces. As in Experiment 4, the regions immediately surrounding 

the central patch in the 3D rocky and corresponding phase-scrambled stimuli were 

matched in average luminance. 



74 
 

 

Figure 3.2. Comparison of matte white and grey displays rendered with 1 and 4 interreflections. (A) Images of white displays under dim 

illumination (first column) and grey displays under bright illumination (second column), for 1 interreflection (top row) and 4 interreflections 

(bottom row). (B) Luminance profiles at different cross sections of the images in (A). The cross sections (a-f) in (A) correspond to the plots (a-f) 

in (B). 
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Figure 3.3. Examples of phase-scrambled stimuli for each interreflection condition. 

These images were created from the matte white surround condition (bright illumination). 

 

Procedure 

The presentation of trials was the same as in Chapter 2. The task instructions were 

also the same but additional instructions were given. In Experiment 5A, observers were 

instructed to change the lightness of the flat central patch on the adjustable surface until 

it looked like it was the same lightness or painted with the same paint as the flat central 

patch on the target surface. Observers were also told that different surfaces could be 

illuminated differently, which might affect the overall brightness of the surfaces. It was 

emphasised that they should match the central patches on their intrinsic lightness 

value, not brightness, which might be affected by the intensity of the illumination. 

However, it was also emphasised that they should not make cognitive decisions about 

the lightness of the patches, and that this was best avoided by not spending excessive 

time on each trial. To show that they understood the task instructions, observers 

completed eight practice trials in front of the experimenter before moving onto real 

trials. All observers demonstrated an understanding of the instructions. 

There were four surround-type conditions in Experiment 5A: rocky matte, rocky 

glossy, phase-scrambled matte equivalent, and phase-scrambled gloss equivalent. For 

each condition there were two surround albedos: white (90% reflectance) and grey 

(19.8% reflectance). Each surface was rendered under high or low illumination, with 1, 

2, 3 or 4 interreflections, resulting in 64 surround conditions in total. For these 64 

surround conditions, observers judged three test patch albedos: grey (19.8%), light-
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grey (46.8%), and white (90% reflectance). Observers did not repeat any conditions, 

resulting in 192 trials for each observer. 

In Experiment 5B, the task and stimulus presentation was the same as in 

Experiment 5A, except that observers were instructed to adjust the match patch until it 

appeared to be the same lightness as the surround. The instructions were otherwise the 

same as in Experiment 5A. The different conditions were also the same as in Experiment 

5A, with some exceptions. Observers did not judge the lightness of phase-scrambled 

surrounds because there was no clear percept of a uniform albedo surface, and 

therefore no single lightness value to associate with these surrounds. Due to a ceiling 

effect in Experiment 5A (see results and discussion), the white test patch condition was 

not included in this experiment, leaving 64 conditions in total. To address the variability 

that was problematic in Experiment 5A, each observer repeated lightness judgments 

three times for each condition. This resulted in 192 trials for each observer. 

 

Results and discussion 

The results of Experiment 5A are presented in Figures 3.4 and 3.6, for each test 

patch albedo (grey and light grey), gloss level (matte and glossy), surround albedo (grey 

and white), surround type (rocky and phase-scrambled), illumination level (high and 

low), and interreflection condition (1, 2, 3 and 4). The white test patch condition was 

excluded from analyses due to ceiling effects. Observers reported that they could often 

not set the adjustable patch high enough to match the white test patch, especially in the 

high illumination condition. One observer was excluded from analyses because more 

than 5% of their data was outside 2.5 standard deviations from the mean. The data 

points in Figure 3.4 show the average lightness settings for each condition, plotted in 

Munsell values. The data were also plotted in log luminance (Figure 3.6) to determine 

whether observers’ matches were closer to luminance or Munsell matches. 
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Figure 3.4. Average data for Experiment 5A, plotted in Munsell values. Closed data 

points are lightness settings for test patches under high illumination, and open data points 

are settings for test patches under low illumination. The green dotted lines indicate veridical 

test patch Munsell matches. 

 

The present experiment was designed to investigate how various contextual 

factors influence the lightness of a test patch, such as features of the surround (albedo, 

gloss level, and surround type), the prevailing illumination, and the number of 

interreflections. To simplify the analyses of the conditions of interest, we will discuss 

differences between the test patch albedo conditions. Light grey test patches (Figure 

3.4B and 3.4D) were consistently judged to be lighter than grey test patches (Figure 

3.4A and 3.4C). The light grey test patches were both physically lighter and brighter 
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than grey test patches, so it is unsurprising that they were judged to be lighter. 

Additionally, the difference between high and low illumination settings (closed and 

open data points, respectively) was larger for the light grey test patch (Figure 3.4B and 

3.4D) compared to the grey test patch (Figure 3.4A and 3.4C). This effect is expected if a 

test patch’s lightness is affected by its luminance, which it was in this experiment given 

that test patches were judged to be lighter under high compared to low illumination 

(compare filled and open data points in Figure 3.4). In the present experiment, 

increasing the illumination had a multiplicative effect on test patch luminance. Thus the 

change in test patch luminance from low to high illumination was greater for the light 

grey compared to the grey test patch. This greater difference in luminance translated to 

a greater difference in perceived lightness. The above effects for test patch albedo were 

common across all conditions. To simplify the comparison of other conditions, further 

analyses were averaged across test patch albedo. 

The data in Figure 3.4 reveal that perceived test patch lightness was affected by 

the different surround and illumination conditions. However, the number of 

interreflections did not have a consistent effect on lightness judgments9. The average 

lightness settings in Figure 3.4 were subjected to a within-subjects four-factor ANOVA, 

with two levels of gloss (matte, glossy), two levels of surround albedo (grey, white), two 

levels of surround type (rocky, phase-scrambled), and two levels of illumination (low, 

high). Interreflections and test patch albedo were removed as factors to simplify the 

analysis. There was a main effect of gloss level, F(1, 23) = 172.28, p < .001,  surround 

albedo, F(1, 23) = 126.55, p < .001, surround type, F(1, 23) = 56.32, p < .001, and 

illumination level, F(1, 23) = 1755.29, p < .001. Averaged across the other factors, test 

                                                           
 

9 To verify that there was no consistent effect of interreflections, the average lightness settings 

for each interreflection condition were subjected to a one-way ANOVA, for each of the other 32 

conditions (i.e. each connected set of data points in Figure 3.4). All ANOVAs were non-

significant, all p > .05, except for one condition (glossy, rocky, grey surround, with the grey test 

patch under high illumination). A follow-up trend analysis revealed no significant linear trend, p 

> .05, and follow-up contrasts showed that the settings from 1 interreflection did not differ from 

the settings with 2, 3, and 4 interreflections. Thus the significant ANOVA for this one condition 

was not revealing any sensible differences between interreflection conditions, and will not be 

examined further. Furthermore, when interreflections were included in a multi-factor ANOVA 

with all other conditions, there was no main effect of interreflections, F(1, 23) = 0.92, p = .435. 
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patches were judged to be darker when they were embedded in glossy versus matte 

surrounds, white versus grey surrounds, and rocky versus scrambled surrounds. Test 

patches were also judged to be darker in the low illumination versus the high 

illumination condition. However, there were significant interactions involving all of 

these conditions, indicating that the differences between levels of the factors reported 

above varied depending on levels of other factors. In the following sections we report 

these interactions, and deviations in lightness settings from ground truth. 

 

The effect of gloss level on perceived lightness 

Figure 3.5A plots the difference between lightness settings in the grey and white 

surround conditions, for each gloss level and surround type. There was a significant 

interaction between gloss level and surround albedo, F(1, 23) = 118.49, p < .001. Glossy 

displays led to a smaller difference in perceived lightness between test patches 

embedded in white and grey surrounds (average Munsell difference of 0.74) compared 

to matte displays (average Munsell difference of 1.29), averaged across other 

conditions. This can be seen in Figure 3.4 by looking at the differences between the left 

panels (grey surround) and right panels (white surround) in Figure 3.4A and 3.4B 

(matte conditions), and comparing this to differences between the left and right panels 

in Figure 3.4C and 3.4D (glossy conditions). There was no three-way interaction 

between gloss level, surround albedo and surround type, F(1, 23) = 0.003, p = .954, 

indicating that the differences between matte and glossy displays were similar for the 

rocky and phase-scrambled conditions. This replicates the findings in Chapter 2, which 

showed that lightness constancy across changes in background was better for glossy 

displays (Experiment 1), but this improvement in lightness constancy for glossy 

displays was not different for the rocky and phase scrambled conditions (Experiment 

4). 

We also examined whether glossy displays led to more consistent lightness 

judgments across changes in illumination level. Figure 3.5B plots the difference between 

lightness settings in the high and low illumination conditions, for each gloss level and 

surround type. The results revealed that there was no interaction between gloss level 

and illumination level, F(1, 23) = 0.001, p = .982, nor was there a three-way interaction 
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between gloss level, illumination level and surround type, F(1, 23) = 0.02, p = .892. 

Lightness judgments between high and low illumination conditions did not differ for 

glossy and matte displays (average Munsell difference of 1.75 for both). This result was 

similar for the rocky and phase-scrambled conditions. These results show that lightness 

constancy across changes in illumination did not improve for glossy surfaces compared 

to matte surfaces, unlike those observed with changes in surround albedo. 

 

 

Figure 3.5. Graphs of interaction effects in Experiment 5A. (A) Interaction between 

surround albedo and gloss level. The difference in settings between white and grey surround 

conditions is plotted for each gloss level (matte, glossy), and each surround type (rocky, 

scrambled), averaged across all other factors. (B) No interaction between illumination level 

and gloss level. The difference in settings between high and low illumination conditions is 

plotted for each gloss level (matte, glossy), and each surround type (rocky, scrambled). (C) 

Interaction between illumination level, surround type and surround albedo. The difference in 

settings between high and low illumination conditions is plotted for each surround albedo 

(grey, white) and each surround type (rocky, scrambled). 

 

The effect of surround albedo and surround type on perceived lightness 

The results show that lightness constancy across changes in illumination varied 

depending on surround albedo and surround type. There was a significant interaction 



81 
 

between surround albedo and illumination level, F(1, 23) = 31.81, p < .001, and a 

significant interaction between surround albedo and surround type, F(1, 23) = 367.34, p 

< .001. These interactions must be interpreted in light of a significant higher-order 

interaction between surround albedo, illumination level and surround type, F(1, 23) = 

32.70, p < .001. This three-way interaction is represented in Figure 3.5C. The y-axis is 

the difference in lightness settings between high and low illumination, and this measure 

of lightness constancy is plotted for each surround albedo (left and right sets of bars) 

and each surround type (different coloured bars). A lower score indicates more 

consistent lightness settings (i.e. better lightness constancy) across changes in 

illumination. 

To investigate this three-way interaction further, lightness settings were subjected 

to a follow-up two factor ANOVA for each surround albedo (grey and white), with two 

levels of surround type (rocky, scrambled), and two levels of illumination level (low, 

high), averaging across all other factors. For both grey and white surround conditions, 

there was a main effect of illumination level, F(1, 23) = 1439.30, p < .001 (grey 

surround), F(1, 23) = 1204.07, p < .001 (white surround), indicating that test patches 

under high illumination were set lighter than those under low illumination. This is 

represented in Figure 3.5C by the positive difference scores for each surround 

condition. There was also a main effect of surround type, F(1, 23) = 114.38, p < .001 

(grey surround), F(1, 23) = 232.23, p < .001 (white surround). However, this main effect 

was opposite for the grey and white surround conditions. When the surround was grey, 

test patches were perceived to be lighter when embedded in rocky compared to 

scrambled surfaces. This can be seen in Figure 3.4 by comparing the blue data points to 

the red data points in the left panel of each graph. Conversely, when the surround was 

white, test patches were perceived to be lighter when embedded in scrambled 

compared to rocky surfaces. This can be seen in Figure 3.4 by comparing the blue data 

points to the red data points in the right panel of each graph. There was an interaction 

between illumination level and surround type, F(1, 23) = 28.82, p < .001 (grey 

surround), F(1, 23) = 4.58, p = .043. Like the main effect of surround type, this 

interaction was opposite for grey and white surround conditions. When the surround 

was grey, lightness judgments between high and low illumination conditions were more 

consistent for scrambled displays (average Munsell difference of 1.79) compared to 

rocky displays (average Munsell difference of 1.98). This can be seen in Figure 3.4 by 
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comparing filled data points to the open data points in the left panel of each graph. 

When the surround was white, lightness judgments between high and low illumination 

conditions were more consistent for rocky displays (average Munsell difference of 1.56) 

compared to scrambled displays (average Munsell difference of 1.66). This can be seen 

in Figure 3.4 by comparing filled data points to open data points in the right panel of 

each graph. These results will be discussed in the section titled “Mechanisms responsible 

for observed lightness effects”. 

 

Deviations in perceived lightness from ground truth 

In addition to the differences in lightness judgments between conditions, lightness 

settings also deviated from ground truth (Figure 3.4, green dotted lines). To investigate 

these deviations further, test patch settings were plotted in log luminance (Figure 3.6), 

which helped to determine whether observers were predominantly Munsell matching 

or luminance matching. Test patch settings were also plotted next to the surround 

lightness settings obtained in Experiment 5B (Figure 3.7). 

Each graph in Figure 3.6 plots the luminance settings for a single test patch albedo 

in a particular gloss condition. In each graph, the data for grey and white surround 

conditions are presented in the first and second panel, respectively (blue and red data 

points for rocky and scrambled conditions, respectively). The third panel plots the 

theoretical settings indicating perfect test patch luminance matching (green data 

points), and perfect test patch Munsell matching (green dotted line across all panels). 

When surfaces were illuminated brightly, the theoretical settings for perfect Munsell 

matching were almost equivalent to perfect luminance matching (compare green filled-

in data points to green dotted line). Indeed, observers’ settings were similar to these 

theoretical values when the surround was white and illuminated brightly (filled data 

points, middle panels). However, test patches in the grey surround condition were 

consistently judged to be lighter relative to these theoretical values (filled data points, 

left panels). When surfaces were illuminated dimly, theoretical Munsell matches were 

very different to theoretical luminance matches (compare green open data points to 

green dotted line). Observers’ settings (red and blue open data points) were not as low 

as the theoretical luminance matches (green open circles). Furthermore, the difference 
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in observer settings between the high and low illumination conditions was smaller than 

the difference in theoretical luminance matches (compare the difference between 

closed and open red and blue data points to closed and open green data points). 

Therefore, observers’ settings fell between luminance and Munsell matches. 

Figure 3.7 shows the results of Experiment 5B (black data points), which are 

plotted together with the data from the rocky conditions in Experiment 5A (blue data 

points). The grey surround was perceived to be very similar in lightness to the grey test 

patch (Figure 3.7A and 3.7C, left panels). Thus, the consistently lighter settings for grey 

test patches in Experiment 5A may have arisen from the surround being perceived as 

lighter than it was (on the condition that the grey test patch is perceived to be the same 

lightness as the surround). The number of interreflections influenced the perceived 

lightness of the white surround. Dimly illuminated white surfaces appeared lighter for 

each additional interreflection. Brightly illuminated white surfaces appeared lighter 

after one interreflection. However, there was a ceiling effect with additional 

interreflections where observers were unable to set the adjustable patch lighter. 

Interestingly, test patch lightness did not seem to be affected by these differences in 

surround lightness with increasing numbers of interreflections. 

 

Mechanisms responsible for observed lightness effects 

The aim of Experiment 5 was to explore whether low-level or mid-level 

mechanisms are responsible for lightness perception of centre-surround surfaces under 

changing illumination, and to examine how perceived lightness is affected by the 

number of interreflections. The data from Experiment 5A showed that brightly 

illuminated test patches were consistently judged to be lighter than dimly illuminated 

test patches, indicating that observers were not completely reflectance matching. 

However, the log luminance plots revealed that observers were not just matching test 

patches on luminance either. This is consistent with previous findings in the literature 

(Madigan & Brainard, 2014; Ripamonti et al., 2004). Therefore, it is unlikely that 

lightness effects in Chapters 2 and 3 can purely be attributed solely to brightness 

differences, which limits the explanatory power of models of perception that do not 

differentiate brightness from lightness. This will be discussed further in Chapter 5. 



84 
 

 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0.0

0.5

1.0

1.5

Number of interreflections

M
a

tc
h

 p
a

tc
h

 s
e

tt
in

g
s

lo
g

 l
u

m
in

a
n

c
e

  
(c

d
/m

2
)

A. Matte grey test

Rocky Scrambled

Grey surround White surorund Theoretical

Rocky Scrambled Grey
surround

White
surround

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0.0

0.5

1.0

1.5

Number of interreflections

M
a

tc
h

 p
a

tc
h

 s
e

tt
in

g
s

lo
g

 l
u

m
in

a
n

c
e

  (
c

d
/m

2
)

B. Matte light grey test

Rocky Scrambled

Grey surround White surorund Theoretical

Rocky Scrambled Grey
surround

White
surround

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0.0

0.5

1.0

1.5

Number of interreflections

M
a

tc
h

 p
a

tc
h

 s
e

tt
in

g
s

lo
g

 lu
m

in
a

n
c

e
  
(c

d
/m

2
)

C. Glossy grey test

Theoretical

Grey
surround

White
surround

Rocky Scrambled

Grey surround White surorund

Rocky Scrambled

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0.0

0.5

1.0

1.5

Number of interreflections

M
a

tc
h

 p
a

tc
h

 s
e

tt
in

g
s

lo
g

 l
u

m
in

a
n

c
e

  
(c

d
/m

2
)

D. Glossy light grey test

Rocky Scrambled

Grey surround White surorund Theoretical

Rocky Scrambled Grey
surround

White
surround

Rocky, low illum

Rocky, high illum

Scrambled, low illum

Scrambled surr, high illum

Test Munsell match

Test luminance match



85 
 

Figure 3.6. Average data for Experiment 5A, plotted in log luminance. In each graph, 

the first and second panel plots the data for the grey and white surround conditions, 

respectively (blue and red data points for rocky and phase-scrambled conditions, 

respectively). The third panel plots the theoretical settings indicating perfect test patch 

luminance matching (green data points), and perfect test patch Munsell matching (green 

dotted line across all panels). 

 

 

Figure 3.7. Average surround Munsell settings from Experiment 5B, plotted next to 

test patch settings from Experiment 5A. Both the surround (black data points) and test 

patch (blue data points) Munsell settings were taken from displays with rocky surrounds. The 

green dotted lines indicate veridical test patch Munsell matches (Experiment 5A). The black 

dotted lines indicate veridical surround Munsell matches (Experiment 5B). 
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The results also showed that test patches embedded in white surrounds were 

consistently judged to be darker than those embedded in grey surrounds, and test 

patches embedded in glossy surrounds were consistently judged to be darker than 

those embedded in matte surrounds. These effects were replications of effects in 

Chapter 2 and might be attributed to white and glossy surfaces being overall brighter 

than grey and matte surfaces, respectively (see Table 2.2). Finally, test patches 

embedded in grey surrounds were consistently set lighter than both veridical Munsell 

matches and veridical luminance matches. Experiment 5B suggested that the likely 

cause of this was the surround appearing lighter. At least two factors might have 

contributed to the grey rocky surround looking lighter. First, an assumption in the 

present experiments was that surface mesostructure was perceived to be the same 

depth in the various surround albedo conditions. However, greater contrast in a surface 

might have been interpreted as a deeper surface. Thus, grey surfaces could have 

appeared lighter than they were but deeper and more dimly illuminated. An alternative 

perception could have been that illumination was not along the line of sight, but grazing 

the surface, causing darker shadows in a lighter surface. Both explanations are equally 

plausible and cannot be differentiated by the present data. However, since grey test 

patch settings were similar between rocky and scrambled displays, these explanations 

cannot be differentiated from a simpler explanation, such as regression to the mean, or 

differences between the test and matching surfaces. 

For white-surround displays, test patches surrounded by rocky surfaces exhibited 

better lightness constancy under changing illumination compared to phase-scrambled 

displays. This result is consistent with the hypothesis that white surfaces contained 

more information to constrain lightness compared to grey surfaces. However, the 

opposite pattern was found for test patches surrounded by grey surfaces, where phase-

scrambled displays exhibited better lightness constancy compared to rocky displays. It 

is unclear why the opposite pattern would occur for grey surrounds based on the 

explanation given above. Furthermore, these effects were extremely small (less than 

half a Munsell value at most). It is possible that these effects were merely due to 

perceptual differences in the luminance range and/or contrast of rocky and scrambled 

surrounds. Even though they were physically matched on their range and distribution of 
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luminance values, looking at the rocky glossy display in Figure 2.1 and phase-scrambled 

glossy equivalent display in Figure 2.15, the contrast of the brightest points (specular 

highlights in the rocky display) appears to be greater in the phase-scrambled display. 

An unexpected finding was that lightness settings did not reliably differ between 

interreflection conditions. This was the case even though the number of interreflections 

affected the perceived lightness of the white surrounds (Experiment 5B). Dimly lit white 

surrounds were judged to be lighter with the addition of each interreflection. However, 

this increase in lightness was accompanied by the surfaces becoming brighter on 

average with the addition of each interreflection. Thus the effect of interreflections on 

perceived surround lightness cannot be separated from the effect of brightness on 

lightness. It does not make sense to have observers judge the lightness of a phase-

scrambled surround (there is no clear perception of a uniform albedo surface), however 

future research should examine the effect of the number of interreflections on surfaces 

with complex mesostructure while holding constant the average brightness of the 

surfaces. 

The above results have implications for the conclusions made in Chapter 2. The 

results of Chapter 2 showed that glossy surfaces led to better lightness constancy across 

changes in surround albedo compared to matte surfaces. This pattern was not reliably 

different for rocky and phase-scrambled stimuli, so it was concluded that low-level 

differences in contrast and luminance distributions were sufficient for explaining this 

effect. This finding was replicated in the present experiment where up to 4 

interreflections were used. This suggests that the ability to perceptually differentiate 

light and dark surrounds based on the contrast of shadows does not modulate the 

perceived lightness of embedded test patches. Although the number of interreflections 

did not affect test patch lightness (Experiment 5A), it did affect lightness judgments of 

the surrounds (Experiment 5B). This suggests that interreflections affect the apparent 

lightness of surfaces that are involved in creating the interreflections, which is 

consistent with previous studies (Gilchrist & Jacobsen, 1984; Ruppertsberg & Bloj, 

2007). It remains unclear whether these findings (from the present experiment and 

previous research) were caused by mid- or low-level computations. One possible low-

level explanation is that the visual system attributes a higher albedo value to images 

with minimal contrast and/or structure. The greater number of interreflections 
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generated by white surfaces fills in shading, leading to lower contrast images with less 

structure. This could be an indication of a lighter surface, regardless of surface-level 

percepts. Such an explanation fits with previous findings that extremely simple stimuli 

tend to look white (e.g. surfaces studied in Gilchrist, 2006; Gilchrist et al., 1999). 

There was no effect of gloss on test patch lightness constancy across changes in 

illumination level. In Chapter 2 we speculated that glossy surfaces led to lightness 

constancy across changes in background albedo because the specular highlights had 

constant brightness across all background albedos. Thus the range and/or contrast of 

luminance values in the surround may have better constrained lightness in glossy 

compared to matte displays. However, changing the brightness of the illumination also 

changed the brightness of the specular highlights in the glossy displays. Thus, with 

changes in illumination, lightness may not have been as strongly constrained by 

luminance range and/or contrast. This idea is supported by the fact that the phase-

scrambled displays showed the same pattern of results as the rocky displays. 

Overall, Experiment 5 provides little evidence that mid-level mechanisms were 

involved in lightness perception of centre-surround displays across changes in 

illumination. However, observers did exhibit some degree of lightness constancy across 

changes in illumination, as they were not just luminance matching. Chapter 5 will 

discuss the relevance of low-level models of lightness perception when interpreting the 

data from Chapter 2 and Chapter 3. 
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Chapter 4. Perceptual Mechanisms underlying Lightness 

Perception in Homogeneous Centre-Surround Displays 

 

The aim of experimental Chapter 4 is to understand the qualitatively different 

pattern of results observed for the homogeneous centre-surround displays in 

Experiment 1. The experiments in this chapter investigate whether the crispening effect 

is a mid-level phenomenon involving a layered image decomposition (scission), or 

whether low-level mechanisms are sufficient to explain this effect. 

 

Experiment 6: Matching the Texture of the Central Patch and the 

Surround 

In Experiment 1, the homogeneous displays that induced the crispening effect had 

centre and surround textures that were matched and continuous (i.e. uniform centre, 

uniform surround), whereas rocky displays that did not induce crispening had centre 

and surround textures that were discontinuous (i.e. uniform centres and rocky 

surrounds). Previous research has shown that the continuity of the centre and surround 

texture can influence the strength of simultaneous contrast (Hurlbert & Wolf, 2004; 

Laurinen et al., 1997). Laurinen et al. (1997) asked observers to judge the lightness of 

test patches in centre-surround displays containing modulated textures made from 

filtered white noise. Either the entire display was modulated with the same pattern so 

that the centre and surround had a consistent, continuous texture, or the centres and 

surrounds were modulated differently so that the centre and surround had inconsistent 

textures. The latter was done either by orthogonally orienting the centre and surround 

noise patterns, or by using different patterns that contained non-overlapping frequency 

ranges. The results showed that there was a reduction in simultaneous contrast when 

the centres and surrounds were modulated by two different patterns, compared to 

when centre and surround textures were continuous. 

Laurinen et al’.s (1997) findings suggest that the different pattern of results 

obtained for the homogeneous and rocky displays in Experiment 1 might have been 
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caused by differences in the consistency of the centres and surrounds. Like 

simultaneous contrast, the crispening effect is an enhanced lightness difference, and 

may be a consequence of homogeneous surrounds containing the same continuous, 

uniform texture as the central patch. The crispening effect may have been absent in the 

rocky surround conditions due to discontinuous centre and surround textures, i.e. the 

surrounds were rocky and the centres were flat. Experiment 6 tested whether 

crispening could be induced in rocky displays with consistent centre-surround textures. 

We hypothesised that if centre-surround texture consistency causes the crispening 

effect, then crispening should be observed in rocky displays with continuous rocky test 

patches. Crispening should not be observed in such displays if centre-surround texture 

consistency is not sufficient to induce the effect. The perceptual mechanisms that might 

underlie the effects of centre-surround consistency on lightness will be discussed in 

light of the results. 

 

Methods 

Observers 

Thirteen first-year psychology students participated in Experiment 6. All were 

naïve to the purposes of the experiment. 

 

Apparatus and stimuli 

The task, stimulus creation, and presentation were the same as in Chapter 2 

experiments. The adjustable display was the same display used in Experiment 1, 2 and 4 

(Figure 2.1E). The test stimuli were centre-surround displays presented in Figure 4.1. 

The surrounds varied in surface relief and gloss level, and the centres varied in surface 

relief, gloss level and albedo. Only one surround albedo was used (mid-grey, 19.8% 

reflectance or Munsell 5). We reasoned that this was sufficient because in Experiment 1, 

the pattern of crispening was found to be the same for all surround albedo conditions. 

Five different types of displays were created, which are shown in Figure 4.1, rows A-E. 

The displays from Chapter 2 were used for the homogeneous condition (row A) and the 

two flat centre, rocky surround conditions (rows D and E; also see Figures 2.1 and 2.5). 
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New displays were rendered for the remaining two conditions (rocky centre and 

surround conditions; Figure 4.1, rows B and C). The rocky centres were a continuation 

of the surround texture, with the same level of surface relief and gloss. The rocky 

centres only differed from the surrounds in surface albedo. In all other respects, 

surfaces in these conditions were rendered in exactly the same way as the stimuli in 

Chapter 2 (see Experiment 1 methods section). 

 

Procedure 

The presentation of the trials and task instructions were the same as in Chapter 2. 

There were five display-type conditions: continuous homogeneous (Figure 4.1A), 

continuous matte (Figure 4.1B), continuous glossy (Figure 4.1C), discontinuous matte 

(Figure 4.1D), and discontinuous glossy (Figure 4.1E). In the continuous conditions, the 

displays contained rocky centres and surrounds, except for the homogeneous condition 

where displays had flat centres and surrounds. In the discontinuous conditions, the 

displays had flat matte centres and rocky surrounds. For each of these five display-type 

conditions there were 11 test patch albedo conditions, resulting in a total of 55 

conditions. The test patch values were the same as in Experiment 1 (see Table 2.2), 

except that the first albedo and last three albedos were not included (see Table 4.2 for 

test patch values included). These test patch albedos were excluded because we were 

only interested in test patches involved in the crispening effect, i.e. those close in albedo 

to the surround. The two immediate increment and two immediate decrement values 

were the same as the “extra test patch” values used for 19.8% reflectance in Experiment 

1 (Table 2.2, fourth row). Figure 4.1 shows these immediate increments and decrements 

outlined in orange. Each observer performed three repeats per condition, resulting in a 

total of 165 trials. 
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Figure 4.1. Stimuli used in Experiment 6. The surrounds are cropped in this figure but 

were presented full size in the experiment. Each row shows the appearance of the test 

patches for each condition. The first three rows have continuous centre and surround 

textures: (A) matte flat centre and surround; (B) matte rocky centre and surround; (C) glossy 

rocky centre and surround. The last two rows have discontinuous centre and surround 

textures: (D) matte flat centre, matte rocky surround; (E) matte flat centre, glossy rocky 

surround. The test patches within the orange outlines are low contrast increments and 

decrements. Note that in the continuous matte and glossy condition (rows B and C) these 

low contrast test patches appear to be indistinguishable from the surround, whereas in the 

uniform centre-surround condition (row A) they are visible. See main body text for details 

about test patches labelled (a-h). 

 

Results and discussion 

The results of Experiment 6 are presented in Figure 4.2. The data reveal that the type of 

display affected test patch lightness settings; the homogeneous, continuous texture, and 

discontinuous texture conditions gave rise to different patterns in the data. The 

crispening effect was observed in the homogeneous condition (Figure 4.2A). There was 

a “step” in lightness settings as the test patch albedo passed through that of the 

surround. In the discontinuous texture conditions, where the surrounds were rocky and 

the centres were flat, there was a monotonic relationship between test patch reflectance 

and adjustable patch settings (Figure 4.2D and 4.2E). These findings replicated the 

results found in Chapter 2, Experiment 1. The results were less clear for the continuous 

texture conditions, where both the centres and surrounds were rocky (Figure 4.2B and 

4.2C). Unlike the homogeneous condition, crispening was not observed at the 

increment-decrement transition. Nor was there a monotonic relationship between test 

patch reflectance and adjustable patch settings. Rather, there was a “flattening” of the 

data curve at this transition, where test patches close to the surround reflectance were 

set very similarly to each other. This was followed by a “step” in lightness settings 

between increments (c) and (d) in the matte condition and (g) and (h) in the glossy 

condition. These two peculiar patterns (the flattening and the step) in the continuous 

texture conditions will be further investigated below. 



94 
 

 

Figure 4.2. Average results for Experiment 6. The graphs (A-E) correspond to the 

conditions (A-E) in Figure 4.1. The test patch settings (a-h) correspond to the test patches 

(a-h) in Figure 4.1. The white data points are lightness settings for the surround-albedo test 

patch, i.e. the test patch that had the same albedo as the surround. The blue data points are 

test patch lightness settings that did not reliably differ from the surround-albedo test patch 

settings. The diagonal solid black line represents veridical Munsell matches. The vertical 

black dotted line indicates the surround Munsell value. Error bars are standard error of the 

mean, and represent the inter-observer variability for a particular condition. In a number of 

conditions, error bars are smaller than the data points, so are not visible. 
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Flattening at the increment-decrement transition 

Figure 4.2B and 4.2C shows that for the continuous texture conditions there was a 

flattening of the data curve around the transition from decrements to increments, 

where test patches close in albedo to the surround (i.e. immediate increments and 

decrements) were set very similarly. This flattening was statistically verified via paired 

t-tests with Sidak-corrected alpha values of .00851 per test10, comparing lightness 

settings for the surround-albedo test patch (white data point) to the six lowest contrast 

test patches against the surround (Figures 4.1 and 4.2, test patches a-d for matte and f-g 

for glossy; see Table 4.1 for t values, df, and p values). For the continuous matte 

condition, lightness settings for test patches (b) to (c) did not reliably differ from the 

surround-albedo test patch (Figure 4.2B, blue data points). This implies that the two 

immediate increments and two immediate decrements were not differentiable from the 

surround. These results were the same for the continuous glossy condition, but in 

addition the settings for test patch (f) were also not reliably different from the surround 

(Figure 4.2C, blue data points). This flattening in the data curve for the continuous 

texture conditions was compared to the homogeneous and discontinuous texture 

conditions. For the homogeneous condition (Figure 4.2A) all test patch settings reliably 

differed from the surround-albedo test patch (white data point). For the discontinuous 

texture conditions (Figure 4.2D and 4.2E), only the first increment for matte, and first 

two increments for glossy (blue data points) did not reliably differ from the surround-

albedo test patch settings (white data point). Thus, in general, lightness settings for 

immediate increments and decrements were more similar in the continuous texture 

conditions compared to the other display-type conditions. 

 

                                                           
 

10 Sidak-corrected alpha values were calculated as 1 = 1 – (1 – )1/n = 1 – (1 – 0.05)1/6 = .00851. 
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   Homogeneous   Continuous matte   Continuous glossy   Discontinuous matte   Discontinuous glossy 

Test patch 

Munsell 
  t p   t p   t p   t p   t p 

4.25   14.28 <.001*   5.93 <.001*   2.77 .0170   8.31 <.001*   9.62 <.001* 

4.7   7.84 <.001*   1.56 .145   1.40 .186   3.51 .0043*   5.45 <.001* 

4.85   5.79 <.001*   0.38 .711   0.02 .987   4.83 <.001*   3.81 .0025* 

5.15   3.84 .00237*   0.01 .991   2.75 .0176   3.08 0.0096   0.44 .671 

5.3   6.80 <.001*   1.38 .192   2.98 .0115   3.17 .0081*   2.21 .0476 

5.75   7.63 <.001*   9.40 <.001*   4.89 <.001*   11.07 <.001*   5.30 <.001* 

Table 4.1. t values and p values comparing lightness settings between the surround-albedo test patch to the six lowest contrast test 

patches against the surround. *p < .00851; df = 12 for all comparisons. 
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The stimuli in Figure 4.1 (rows B and C) suggest that the flattening observed in the 

continuous texture conditions may have been due to a masking effect when test patches 

were low in contrast against the surround. Specifically, the range and distribution of 

luminance values within the test patch and surround textures may have been masking 

any differences in lightness between the centre and surround. Figure 4.1 demonstrates 

that for the continuous matte condition (row B), test patches (a) and (d) visibly differ 

from the surround in lightness, but the test patches in between are barely or not at all 

visible against the surround. For the continuous glossy condition (row C), test patches 

(e) and (h) visibly differ from the surround in lightness, whereas the test patches in 

between are, again, difficult or impossible to detect. In contradistinction, for the 

homogeneous condition (row A), all test patches that differ in albedo from the surround 

are clearly visible. Furthermore, in the discontinuous texture conditions (rows D and E), 

the low contrast test patches appear to be very similar to each other, but they are visible 

against the surround. This supports the idea of a masking artefact affecting the results 

when both the centre and surround had a continuous rocky texture. 

 

Step in lightness settings 

Figure 4.3 plots the data from the continuous and discontinuous texture 

conditions together for direct comparison, for matte (left panel) and glossy (right panel) 

displays. There was a monotonic increase in lightness settings for the discontinuous 

texture conditions (purple data points), but for the continuous texture conditions 

(green data points) there was a “step” in lightness settings between increments (c) and 

(d) in the matte condition, and (g) and (h) in the glossy condition. This step was 

statistically reliable. Paired t-tests using Sidak-corrected alpha values of .00465 per 

test11 were carried out to compare lightness settings in the continuous and 

discontinuous texture conditions (see Table 4.2 for t values, df, and p values). For the 

first eight test patch albedos in the matte condition, and the first nine test patch albedos 

in the glossy condition, there was no significant difference between lightness settings in 

                                                           
 

11 Sidak-corrected alpha values were calculated as 1 = 1 – (1 – )1/n = 1 – (1 – 0.05)1/11 = 

.00465. 
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the continuous and discontinuous texture conditions. However, for the last three test 

patch albedos in the matte condition, and the last two test patch albedos in the glossy 

condition, test patches were judged to be lighter in the continuous compared to the 

discontinuous texture conditions (compare green and purple data points in Figure 4.3, 

respectively). 

 

 

Figure 4.3. Average data from the continuous and discontinuous texture conditions 

plotted together, for matte (left panel) and glossy (right panel) displays. Stars indicate 

a significant difference between the continuous (green data points) and discontinuous 

(purple data points) texture conditions for a particular test patch albedo. Error bars are 

standard error of the mean, and represent the inter-observer variability for a particular 

condition. In a number of conditions, error bars are smaller than the data points, so are not 

visible. 

 

The above results suggest that once increments were clearly differentiable from 

the surround in the continuous texture condition (Figures 4.1 and 4.3, test patches d 

and h), there was a step in lightness settings where visible increments were perceived 

to be lighter in the continuous compared to the discontinuous texture condition. It is 

possible that this step is similar to the crispening effect observed in the homogeneous 

condition, but the masking artefact was preventing crispening from occurring at the 

transition from increments to decrements. Another possibility is that observers used 

the brightest regions of diffuse shading within the test patches to judge surface 
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lightness (e.g. see Todd et al., 2004; Toscani et al., 2013). The displays were illuminated 

slightly obliquely, meaning that areas of the rocky test patches faced towards the light 

source, resulting in brighter (and darker) regions compared to the flat test patches. 

However, if observers used brighter regions in the rocky test patches to judge lightness, 

then we would have expected decrement test patches to also appear lighter in the 

continuous texture conditions. This was not the case; the results revealed that there was 

no reliable difference between decrement test patch settings between the continuous 

and discontinuous texture conditions. Furthermore, the rocky test patches that were 

affected by masking should have appeared lighter than their flat test patch 

counterparts, but no reliable difference was observed between continuous and 

discontinuous texture conditions for these test patches either. Therefore, the results 

suggest that crispening may have occurred in the continuous rocky condition, but it was 

not possible to confirm this due to possible masking artefacts. 

 

  Matte  Glossy 

Test patch 

Munsell 

 
df t p  df t p 

2.75  12 2.20 .0298  12 0.455 .650 

3.5  12 0.26 .795  12 0.260 .795 

4.25  12 0.36 .721  12 2.404 .0177 

4.7  12 0.56 .574  12 1.476 .143 

4.85  12 0.91 .365  12 0.269 .788 

5  12 0.33 .746  12 2.404 .0177 

5.15  12 2.66 .0090  12 0.761 .448 

5.3  12 1.47 .143  12 1.671 .0974 

5.75  12 4.73 <.001*  12 0.0371 .970 

6.5  12 5.70 <.001*  12 7.351 <.001* 

7.25  12 5.48 <.001*  12 6.274 <.001* 

Table 4.2. t values, p values, and df comparing the lightness settings between the 

continuous and discontinuous texture conditions, for each test patch Munsell value.   

* p < .00465 

 

If crispening occurred in the continuous texture conditions, this suggests that 

crispening in the homogeneous displays may have also been due to continuous centre-

surround textures (homogeneous centre, homogeneous surround). Laurinen et al. 

(1997) suggested that low-level spatially tuned neurons that signal information about 
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surface textures and object edges may modify early brightness signals from the initial 

stages of cortical processing in area V1 (Olzak & Thomas, 1991, 1992; Thomas & Olzak, 

1996). They suggested that centres and surrounds with different textures might isolate 

different sets of early cortical mechanisms, which could lead to differently modified 

brightness signals compared to when centres and surrounds have continuous textures. 

They did not claim to know what mechanisms might underlie the modification of early 

brightness signals, so this remains unclear. Gilchrist (2006) suggested that differences 

between Laurinen et al.’s (1997) continuous and discontinuous textured displays were 

an effect of grouping by the Gestalt principle of similarity. An alternative explanation is 

based on the idea that the continuous texture displays in Figure 4.1B and 4.1C might 

have been perceptually decomposed into a transparent foreground layer and a 

background layer. A consequence of continuous centre and surround textures is that the 

luminance polarities along the border between the centre and surround are preserved 

over their entire length. Studies have shown that such conditions lead to the perceptual 

decomposition of luminance values into a foreground and background layer (Adelson & 

Anandan, 1990; Anderson, 1997, 1999; Beck et al., 1984, Metelli, 1970, 1974a, 1974b). 

Wollschläger and Anderson (2009) showed that image decomposition could be evoked 

in textured displays when the centre and surround had similar textures and satisfied 

the conditions for transparency (see also Anderson & Khang, 2010). Indeed, in Laurinen 

et al.’s (1997) continuous pattern displays, the luminance polarities at the borders were 

consistent with scission. Furthermore, these displays looked transparent. The displays 

in the present experiment may have also evoked percepts of transparency. The test 

patches in the consistent texture conditions may have been perceptually decomposed 

into a homogeneous transparent filter overlaying the rocky background, or alternatively 

the background could have been perceptually interpreted as a filter with a central hole 

that revealed an opaque rocky surface. From the present experiment we cannot draw 

conclusions about whether crispening occurred in the continuous textured rocky 

displays, nor whether observers perceived the test patches or surrounds to be 

transparent. Experiment 7 investigates whether transparency could be responsible for 

the crispening effect in homogeneous centre-surround displays. 
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Experiment 7: Matching Surfaces on Two Dimensions 

The crispening effect observed for the homogeneous centre-surround displays in 

Experiment 1 implies that there could be a qualitative difference in the way test patches 

are perceived when embedded in homogenous versus inhomogeneous surrounds. Some 

researchers have suggested that lightness perception may involve more than one 

perceptual dimension (Ekroll & Faul, 2013; Logvinenko & Maloney, 2006; Vladusich, 

2012, 2013; Vladusich et al., 2007). Ekroll, Faul, and colleagues (Ekroll & Faul, 2009, 

2012a, 2012b, 2013; Ekroll et al., 2004, 2011) observed crispening in homogeneous 

coloured centre-surround displays, and suggested that impressions of transparency 

contributed to the appearance of the central patch. There is a significant body of work in 

lightness and colour that has shown that layered image decompositions can induce 

large lightness and colour induction effects (Anderson, 1997; Anderson & Khang, 2010; 

Anderson & Winawer, 2005, 2008; Wollschläger & Anderson, 2009). In Ekroll and Faul’s 

(2013) study, observers varied the transmittance and/or the colour of an adjustable 

patch on a variegated surround to match a target on a homogeneous surround. The 

variegated and homogeneous surrounds had the same average chromaticity, which the 

authors argued eliminated the influence of von Kries adaptation to the crispening effect. 

They found that targets embedded in uniform surrounds were better matched when 

observers were allowed to vary both the physical colour and transmittance of the 

matching patch on the variegated surround. Furthermore, transmittance and saturation 

settings were inversely related to the chromatic contrast between the target patch and 

its surround; at low chromatic contrasts, homogeneous centre-surround stimuli 

appeared to trigger impressions of transparency with the target region being 

perceptually divided into a saturated, transparent filter layer and a background layer 

the same colour and saturation as the surround. It has yet to be explored whether this 

finding extends to lightness displays. 

The aim of Experiment 7 is to determine whether crispening in achromatic 

homogeneous centre-surround displays is caused by mid-level mechanisms involving 

perceptual decomposition (scission) of displays into layers, as suggested by Ekroll and 

Faul (2013). In this experiment, observers were able to vary both the lightness and 

transmittance of an adjustable patch overlaying a rocky surround to match the test 

patch embedded in the homogeneous surround. We hypothesised that if crispening in 



102 
 

lightness displays is caused by scission of the test patch and background, then perceived 

test patch transparency should increase as the centre-surround contrast is reduced, i.e. 

where the crispening effect occurs. Figure 4.4 illustrates how this inverse relationship 

between centre-surround contrast and perceptual transparency would influence test 

patch lightness. If perceptual transparency increases as the test patch becomes lower in 

contrast against the surround, more of the background would become visible through 

the test patch. For increments (Figure 4.4A), this means more of the “blackness” in the 

test patch would be attributed to the darker background layer, causing the filter layer 

(the test patch) to appear lighter. For decrements (Figure 4.4B), as transparency 

increases, more of the “whiteness” in the test patch would be attributed to the lighter 

background layer, causing the test patch to appear darker. 

The idea that perceptual decomposition affects lightness in homogeneous centre-

surround displays is appealing because it addresses reports of the difficulty in such 

displays of making truly satisfactory asymmetric lightness or colour matches (Ekroll et 

al., 2004; Faul et al., 2008; Gelb 1929; Vladusich et al., 2007). It also captures the flimsy 

or wispy appearance of low contrast test patches embedded in homogeneous 

surrounds, compared to higher contrast test patches, or those embedded in textured or 

variegated surrounds (see Figure 2.5). However, it is important to recognise low-level 

differences between the homogeneous and rocky stimuli that may have contributed to 

differences in the pattern of results in Experiment 1. For example, the apparent contrast 

of the test patches against the surround differed between homogeneous and rocky 

displays. Figure 2.5 shows that, in the homogeneous displays, varying test patch 

reflectance also changed the apparent contrast of the test patch against the surround. 

This did not occur as much in the rocky displays. Furthermore, adjusting the lightness of 

the matching patch in Experiment 1 did not allow observers to match the contrast of 

test patches in homogeneous displays. Adding a transmittance setting would have at 

least two effects on the adjustable patch. First, increasing transmittance would increase 

the transparency of the patch, allowing the texture of the background to be seen 

through the filter. Second, increasing the transmittance would decrease the contrast of 

the adjustable patch against the surround. It is possible that in Ekroll & Faul’s (2013) 

study, adding the transmittance setting allowed observers to better match the 

chromatic contrast of the test patch against the surround. In the present experiment, we 

divided participants into different instructional conditions (see methods section) in an 
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attempt to explore which mechanisms might be responsible for lightness effects in 

homogeneous centre-surround displays. 

 

 

Figure 4.4. Illustration of perceptual decomposition (scission) of homogeneous 

centre-surround displays. (A) Displays with increment test patches are divided into a light 

coloured transparent test patch layer and an opaque continuous grey surround layer. (B) 

Displays with decrement test patches are divided into a dark coloured transparent test patch 

layer and an opaque continuous grey surround layer. 

 

Methods 

Observers 

Sixty first-year psychology students participated in Experiment 7. Twenty 

observers were assigned to a transparency instructions condition, twenty observers 
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were assigned to a contrast instructions condition, and the remaining 20 observers 

were assigned to a no-transmittance control condition (see procedure). 

 

Apparatus and stimuli 

The test stimuli were the matte homogeneous centre-surround displays used in 

Experiment 1 (see Figure 2.1A and Figure 2.5). The adjustable display was a rocky 

surface overlayed with a circular central disk that could vary in simulated albedo and 

transmittance (Figure 4.5A). The rocky backgrounds of the adjustable displays were 

created in Blender in the same way as the continuous texture condition in Experiment 6. 

The central disk in the adjustable display was created in Matlab using Metelli’s 

episcotister model to calculate the luminance of each pixel in the location of the central 

disk on the monitor (see Beck et al., 1984; Metelli, 1970, 1974a, 1974b; Singh and 

Anderson, 2002). For a given albedo and transmittance, each pixel in the adjustable 

patch was calculated using Metelli’s formula: 

 

 p = b + t(1-) (4.1) 

 

where p is the luminance value of the pixel in the region of overlay,  is the 

transmittance value of the disk (the fraction of light passing through the foreground 

disk), b is the luminance of the background pixel, and t is the amount of light reflected 

by the disk (i.e. the luminance of the disk if it were opaque).12 The transmittance value  

was bound between 0 (completely opaque) and 1 (completely transparent), inclusive. In 

the no-transmittance control condition the central disk had a fixed transmittance value 

of 0 (completely opaque) and could only vary in albedo. 

 

                                                           
 

12 Note that t could be converted to reflectance or Munsell values, given that we knew the 

average luminance of an opaque test patch with a given reflectance illuminated by the grove 

light field. 
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Figure 4.5. Adjustable displays used in Experiments 7 and 9. (A) Example of an 

adjustable surface in Experiment 7. The image has been cropped in this figure but the rocky 

background surface was the same size as the homogeneous test surfaces. (B) The 

adjustable surface used in Experiment 9. This image is not cropped. 

 

Procedure 

Observers judged various aspects of flat target patches embedded in a 

homogeneous surround via an asymmetric matching task. In each trial, a homogeneous 

centre-surround test surface (14.88) was presented on the left side of the computer 

screen. On the right side of the screen was a matching surface (also 14.88) with a rocky 

surround and adjustable central patch. Observers could adjust the lightness of the 

adjustable patch by moving the mouse left and right, and could also adjust its 

transmittance by moving the mouse up and down. The test and adjustable surfaces were 

separated by 15.25 of visual angle (centre to centre) and were presented against a 

black background. There were three instruction conditions. In all conditions, observers 

were instructed to first change the lightness of the adjustable patch until it looked like it 

was the same lightness or painted with the same paint as the test patch. Moving the 

mouse left made the patch darker, and moving it right made the patch lighter. After 

observers matched the lightness of the test and adjustable patches, they were instructed 

to set the transmittance of the adjustable patch by moving the mouse down to make the 

patch more transparent, or up to make the patch more opaque. Observers given 

transparency instructions were told that if they perceived the test patch to be 

transparent they should adjust the transmittance of the adjustable patch until it had the 
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same amount of transparency as the test patch. Observers given the contrast 

instructions were instructed to adjust the transmittance of the adjustable patch until it 

was the same contrast against the background, or same visibility against the 

background, as the test patch. In the no-transmittance control condition observers 

could not vary the transmittance of the adjustable patch, so were only asked to judge 

the lightness of the test patch. Note that the word “transmittance” was not used in any 

of the instructional conditions; we just use this term here to point to the dial that 

observers adjusted, i.e. the vertical mouse adjustment. Once observers had made the 

transmittance adjustment, they were instructed to fine tune the lightness and 

transmittance settings by making minor adjustments to each until a satisfactory match 

was reached. Note that for the transparency and contrast instruction conditions, 

observers were able to vary both the lightness and transmittance of the adjustable 

patch at all times (i.e. it was a two-dimensional matching task), but they were instructed 

to adjust lightness first. 

The test surface was always a homogeneous centre-surround display. As in 

Experiment 1, there were six surround albedo conditions, and 13 to 15 test patch 

albedo conditions (see Table 2.2). The surround albedo of the matching surface varied 

from trial to trial, and was the same as the test surface’s surround albedo. There were 

also two gloss-level conditions (matte or glossy) for the background of the matching 

surface. This resulted in a total of 172 trials for each observer. 

 

Results and discussion 

The results of Experiment 7 are presented in Figures 4.6 and 4.8. Figure 4.6 shows 

the test patch lightness settings for each instruction condition, plotted in Munsell 

values. Figure 4.8 plots the transmittance settings for the contrast and transparency 

instruction conditions. The crispening effect was observed in all three instruction 

conditions, i.e. there was a “step” in lightness settings as the test patch albedo passed 

through that of the surround (Figure 4.6). To compare the size of the crispening effect in 

each instruction condition, difference scores were obtained by subtracting the lowest 

contrast (against the surround) decrement settings from the lowest contrast increment 

settings. These difference scores are plotted in Figure 4.7. A lower score indicates a 
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smaller step and therefore less crispening. As in Experiment 1, the darkest (Munsell 

value 1.95) and lightest (Munsell value 9.5) surround conditions were omitted because 

they contained only increments or only decrements, respectively. 
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Figure 4.6. Lightness settings for Experiment 7, plotted in Munsell values. (A) 

Lightness settings for the matte adjustable surface condition. (B) Lightness settings for the 

glossy adjustable surface condition. Each column shows the settings for different instruction 

conditions (contrast, transparency, and no-transmittance). Each row shows the settings for 

different surround-albedo conditions (Munsell 1.95, 3.5, 5, 6.5, 8, and 9.5). Error bars are 

standard error of the mean, and represent the inter-observer variability for a particular 

condition. In a number of conditions, error bars are smaller than the data points, so are not 

visible. 

 

 

Figure 4.7. Increment minus decrement settings for the matte (A) and glossy (B) 

adjustable surfaces in Experiment 7. The horizontal dotted line represents the actual 

difference between increments and decrements. The solid bars represent the increment-

decrement difference scores for each surround Munsell condition (3.5, 5, 6.5 and 8). The 

mean of these surround Munsell conditions was taken for each instruction condition and 

plotted as striped bars. Error bars are standard error of the mean, and represent the inter-

observer variability for a particular condition. 

 

In all conditions, the increment-decrement difference scores were greater than the 

actual (simulated) increment-decrement Munsell difference of 0.3 (horizontal dotted 

lines in Figure 4.7). The crispening effect appeared to be largest when observers were 

instructed to match the centre patches on lightness and apparent contrast against the 

background (Figure 4.7, dark-grey bars). In this condition, the immediate increments 

appeared, on average, about 1.7 Munsell values lighter than the immediate decrements. 

The crispening effect was smaller when observers were instructed to match the centre 
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patches on lightness and transparency, or lightness alone (Figure 4.7, mid-grey and 

light-grey bars respectively). In the transparency instructions condition, the immediate 

increments appeared, on average, about 1.3 Munsell values lighter than the immediate 

decrements. In the no-transmittance control condition, the immediate increments 

appeared, on average, about 1 Munsell value lighter than the immediate decrements. 

The increment-decrement difference scores were subjected to a between-subjects 

one-way ANOVA to determine whether there were any statistically reliable differences 

in the crispening effect between the different instruction conditions. Unlike in previous 

experiments, different observers were allocated to the conditions being compared (i.e., 

the different instruction conditions). For this reason, and since the pattern of results 

was identical for each gloss condition and each surround Munsell condition (see Figure 

4.7), observers’ difference scores were averaged across these conditions to reduce error 

(Figure 4.7C). The one-way ANOVA on these average difference scores revealed that 

there were differences between the conditions, F(2,57) = 3.42, p = .0394. Follow-up t-

tests using Sidak-corrected alpha values of .0170 per test13 indicated that the perceived 

difference between immediate increments and decrements was larger for contrast 

instructions compared to the no-transmittance control, t(57) = 2.60, p = .0119. 

However, the perceived difference between increments and decrements did not differ 

for the contrast instructions and the transparency instructions, t(57) = 1.56, p = .124, 

nor between the transparency instructions and no-transmittance conditions, t(57) = 

1.04, p = .303. The above findings suggest that the crispening effect was largest when 

observers were instructed to match the central patches on lightness and apparent 

contrast against the background, at least compared to when observers were only 

allowed to match lightness. There was no clear difference in crispening between the 

contrast and transparency instruction conditions, even with the increased power gained 

by averaging each observer’s score over all conditions.  

 

                                                           
 

13 Sidak-corrected alpha values were calculated as 1 = 1 – (1 – )1/n = 1 – (1 – 0.05)1/3 = .0170. 
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Figure 4.8. Transmittance settings from Experiment 7, for the matte (A) and glossy (B) 

condition. Closed square data points are settings from the contrast instructions condition, 

and open circle data points are settings from the transparency instructions condition. Each 

colour represents the settings for a different surround albedo condition. The vertical dotted 

lines indicate the surround Munsell value. Error bars are standard error of the mean, and 

represent the inter-observer variability for a particular condition. 



113 
 

However, there were differences between the contrast and transparency 

instruction conditions in the transmittance data. Figure 4.8 plots the transmittance 

settings for the contrast instructions and transparency instructions conditions. Each 

graph plots the transmittance data for each gloss condition of the matching display 

(Figure 4.8A and 4.8B for matte and glossy, respectively) and each surround Munsell 

condition. Within each graph, closed square data points represent transmittance 

settings for the contrast instructions condition, and open circular data points represent 

transmittance settings for the transparency instructions condition. While there were no 

reliable differences in crispening between these conditions, transmittance settings 

strongly depended on task instructions. Observers tended to vary the transmittance 

settings more when they were instructed to match the central patches on contrast 

against the surround compared to when they were asked to match the central patches 

on perceived transparency. In both conditions, transmittance settings increased as test 

patch reflectance became closer to the surround value (vertical dotted lines in Figure 

4.8). However, this effect was much more pronounced in the contrast instructions 

condition, where transmittance peaked at about 0.6 for most surround Munsell 

conditions14, compared to the transparency instructions condition, where transmittance 

peaked at about 0.1 for most surround Munsell conditions. The above observations 

were statistically verified by subjecting the transmittance settings to independent t-test 

using Sidak-corrected alpha values of .00366 per test15 comparing transmittance 

settings in the contrast and transparency instructions conditions (see Tables 4.3 and 4.4 

for t values, df, and p values). The asterisks in Figure 4.8 indicate a significant difference 

in transmittance settings between the two instruction conditions. As can be seen in 

these figures, most of the transmittance settings were significantly higher for the 

contrast (closed square data points) compared to the transparency (open circle data 

points) instructions condition (44 out of 80 for the matte match display; 41 out of 80 for 

                                                           
 

14 The lowest contrast test patch against surround 1.95 was set close to 1 because this test patch 

was actually invisible against the surround, as mentioned in Experiment 1. Thus it would have 

been perceived as having zero contrast, leading observers to set the adjustable patch to be 

invisible. 

 
15 Sidak-corrected alpha values were calculated as 1 = 1 – (1 – )1/n = 1 – (1 – 0.05)1/14 = 

.00366. 
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the glossy match display). The transmittance settings that reliably differed are clustered 

around the test patches that were low in physical contrast against the surround. Thus, it 

appears that observers used transmittance as a proxy to match the central patches on 

perceived contrast, increasing transmittance to lower the contrast of the adjustable 

patch. Observers tended not to vary transmittance much when asked to match the 

central patches on perceived transparency, which might suggest that they did not 

directly perceive transparency in the homogeneous centre-surround displays. This is at 

odds with Ekroll and Faul’s (2013) findings with coloured centre-surround displays, 

where observers given transparency instructions did vary the transmittance setting 

when it was available. 

The results of Experiment 7 raise the question of why observers did not vary 

transmittance when asked to match transparency. There are a number of possible 

reasons. First, when transmittance was varied, the central adjustable patch became 

textured because the rocky background was visible through the filter. Perhaps 

observers did not like to match a textured patch to a uniform patch, so avoid using the 

transmittance variable altogether. Another possible explanation is that they did not 

explicitly perceive transparency in the homogeneous centre-surround display. The 

perceptual outcome may be reminiscent of transparency (low contrast test patches look 

insubstantial or “wispy”), but perhaps observers did not have direct access to this 

impression, or they could not quantify it using a matching task. The fact that 

transmittance was slightly varied in the transparency instructions condition suggests 

that observers may have perceived transparency, but were unable or hesitant to 

quantify this percept. Our own explorations of this revealed that, even for observers 

who reported perceiving the test patch as transparent, it was very difficult to judge how 

transparency should be matched in the adjustable patch. In contradistinction, matching 

the contrast of the edges of the two displays was much more intuitive and was a 

comparatively easy task. The ability to directly measure impressions of transparency in 

homogeneous centre-surround displays may be akin to judging the level of illumination 

in a room. Research has shown that observers can perceive differences in illumination 

between two rooms, but are bad at explicitly matching the illumination (Rutherford & 

Brainard, 2002). A possible reason for why observers varied transmittance when asked 

to match the contrast of the central patches is that varying the mid-level property of 
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transparency acted as a proxy to allow observers to match a low-level property such as 

edge contrast, and this is something that observers could explicitly match. 

The crispening effect did not reliably differ between the contrast and transparency 

instruction conditions. However, transmittance settings were vastly different between 

the conditions. Experiment 8 explored which settings observers found best matched the 

homogeneous centre-surround display. 
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    Surr 1.95  Surr 3.5  Surr 5  Surr 6.5  Surr 8  Surr 9.5 

Comparison   t value p value   t value p value   t value p value   t value p value   t value p value   t value p value 

1   11.93 <.001*   2.75 .0091   3.04 .0043   2.29 .0280   2.94 .0056   0.94 .3529 

2   2.86 .0069   3.38 .0017*   2.34 .0246   2.21 .0334   2.57 .0143   2.55 .0151 

3   4.04 <.001*   4.49 <.001*   2.98 .0050   0.63 .5293   2.42 .0206   1.62 .1130 

4   3.36 .0018*   5.95 <.001*   3.52 .0011*   2.66 .0115   2.51 .0164   1.31 .1969 

5   3.68 <.001*   6.34 <.001*   3.73 <.001*   3.79 <.001*   2.97 .0052   2.55 .0149 

6   2.58 .0140   4.08 <.001*   7.31 <.001*   3.96 <.001*   2.70 .0102   2.44 .0193 

7   4.22 <.001*   4.16 <.001*   6.65 <.001*   6.01 <.001*   5.50 <.001*   2.42 .0204 

8   2.45 .0189   2.88 .0066   5.37 <0.001*   5.61 <.001*   4.05 <.001*   3.23 .0025* 

9   3.46 .0014*   4.93 <.001*   1.76 .0867   5.91 <.001*   7.03 <.001*   4.37 <.001* 

10   0.49 .6285   4.38 <.001*   3.93 <.001*   6.76 <.001*   5.18 <.001*   3.52 .0011* 

11   2.04 .0483   2.39 .0218   3.46 .0014*   4.42 <.001*   6.67 <.001*   6.38 <.001* 

12   1.84 .0741   3.44 .0014*   4.85 <.001*   3.74 <.001*   4.02 <.001*   6.97 <.001* 

13         3.11 .0035*   2.72 .0097   2.13 .0396   2.14 .0390       

14         2.31 .0263   1.67 .1033   2.90 .0062   3.76 <.001*       

Table 4.3. Matte matching display: t values and p values comparing transmittance settings between the contrast and transparency 

instruction conditions, for each surround albedo and test patch albedo condition. The comparison numbers 1-14 correspond to the test 

patches being compared in each graph in Figure 4.8A from left to right. * p < .00366; df = 38 for all comparisons. 
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    Surr 1.95  Surr 3.5  Surr 5  Surr 6.5  Surr 8  Surr 9.5 

Comparison   t value p value   t value p value   t value p value   t value p value   t value p value   t value p value 

1   9.71 <.001*   3.11 .0036*   2.29 .0279   2.66 .0113   0.90 .3743   1.40 .1689 

2   4.62 <.001*   3.04 .0042   2.46 .0186   3.35 .0019*   1.99 .0537   2.41 .0207 

3   3.24 .0025*   3.59 <.001*   1.94 .0599   2.12 .0410   1.52 .1356   2.40 .0216 

4   2.96 .0053   4.40 <.001*   2.96 .0053   3.69 <.001*   2.27 .0293   2.93 .0057 

5   2.70 .0104   5.21 <.001*   6.29 <.001*   3.10 .0036*   2.50 .0167   1.91 .0634 

6   2.04 .0483   6.33 <.001*   5.39 <.001*   3.29 .0021*   2.62 .0126   2.31 .0264 

7   2.70 .0103   4.74 <.001*   6.65 <.001*   4.34 <.001*   3.75 <.001*   2.86 .0069 

8   2.20 .0341   2.90 .0062   4.65 <.001*   7.35 <.001*   6.14 <.001*   4.45 <.001* 

9   2.22 .0322   3.19 .0028*   3.93 <.001*   6.47 <.001*   7.47 <.001*   3.32 .0020* 

10   3.32 .0020*   4.20 <.001*   2.56 0.0144   4.39 <.001*   9.30 <.001*   3.83 <.001* 

11   2.19 .0347   2.93 .0058   4.42 <.001*   4.35 <.001*   6.75 <.001*   6.58 <.001* 

12   2.28 .0285   0.76 .4547   3.07 0.0039   4.20 <.001*   6.15 <.001*   6.11 <.001* 

13         2.28 .0285   1.69 0.0989   3.42 .0015*   5.47 <.001*       

14         1.52 .1376   1.50 0.1415   2.58 0.0140   2.76 .0089       

Table 4.4. Glossy matching display: t values and p values comparing transmittance settings between the contrast and transparency 

instruction conditions, for each surround albedo and test patch albedo condition. The comparison numbers 1-14 correspond to the test 

patches being compared in each graph in Figure 4.8B from left to right. * p < .00366; df = 38 for all comparisons. 
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Experiment 8: Which Dimensions lead to Better Matches? 

Experiment 8 investigates which adjustable patch settings in Experiment 7 were 

“best” matched to test patches embedded in homogeneous surrounds. Experiment 7 

revealed that the crispening effect was similar between the instruction conditions. 

However, interestingly, when observers were able to vary transmittance, they tended to 

use this setting to match the contrast of the centre patches, but not when they matched 

the patches on transparency. This raised the question of which perceptual dimensions 

need to be varied to lead to better lightness matches. In Experiment 8, a new set of 

observers directly compared the settings made in Experiment 7 and judged which 

settings were considered to be better matched in lightness to the test patches in the 

homogeneous displays. We hypothesised that if satisfactory lightness matches can be 

made by adjusting the reflectance of the adjustable patch alone, then observers should 

choose the settings from the no-transmittance control or transparency instructions 

condition as being better matched in lightness to the homogeneous displays. If an 

additional dimension such as contrast or transparency is required to make satisfactory 

lightness matches, then observers should choose the settings from the contrast 

instructions condition as being better matched in lightness to the homogeneous 

displays. This is because observers only varied transmittance substantially in the 

contrast condition. 

 

Methods 

Observers 

Twenty first-year psychology students participated in Experiment 8. None had 

participated in Experiment 7. 

 

Apparatus and stimuli 

The homogeneous centre-surround stimuli were the same as in Experiment 7. The 

comparison rocky displays were the same as the adjustable displays in Experiment 7, 

containing a rocky surface overlayed with a circular central disk that varied in 
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simulated albedo and transmittance. On each trial, the albedo (t in Equation 4.1) and 

transmittance value ( in Equation 4.1) were the average albedo and transmittance 

settings made by observers in Experiment 7. The surrounds of the displays were 

cropped by 2.49 on each side so that four displays could fit on the computer monitor 

on each trial. 

 

Procedure 

In a two-alternate-forced-choice (2AFC) task, observers judged which instruction 

condition in Experiment 7 led to better lightness matches with the homogeneous 

display. In each trial, two pairs of displays (9.95 each) were presented on the computer 

screen. One pair was presented at the top of the screen, and one pair was presented on 

the bottom of the screen (see Figure 4.9). The surfaces within a pair were separated 

horizontally by 10.71 (centre to centre) and the pairs were separated vertically by 

14.25 (centre to centre). Each pair consisted of a homogeneous centre-surround 

display and the corresponding rocky matching display overlayed by a filter with the 

average reflectance and transmittance settings from Experiment 7. The matching 

displays in each pair compared two of the three instruction conditions in Experiment 7. 

The homogeneous display was the same in the top and bottom pair. Observers were 

instructed to choose in which pair (top or bottom) the central patches were more 

similar in lightness. For the displays that had transparent central patches, observers 

were instructed to only pay attention to the pigment in the filter, and not the 

background that showed through. They made their decision by pressing the up or down 

arrow key for the top and bottom pair, respectively. After the stimuli were displayed, 

there was a five second delay before observers could make a response. Observers were 

told to use this time to carefully consider which pair was better matched, as the 

lightness of the central patches in each pair were extremely similar. 

There were three comparison conditions: contrast condition compared to the 

transparency condition; contrast condition compared to the no-transmittance 

condition, and transparency condition compared to the no-transmittance condition. The 

position on the screen (top or bottom) that each instruction condition pair was 

presented was randomised. The position (left or right) of the homogeneous and rocky 
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displays within each pair was also randomised. For each comparison condition there 

were two gloss levels (matte and glossy), and six surround Munsell conditions (1.95, 

3.5, 5, 6.5, 8, and 9.5). Eight test patches that were the lowest in contrast against the 

homogeneous surround were chosen for each surround Munsell condition (four 

increments and four decrements), except for surround Munsell 1.95 and 9.5, which only 

had increment or decrement test patches, respectively. This led to a total of 240 trials 

for each participant. 

 

 

Figure 4.9. Representation of the layout of a trial in Experiment 8. The surfaces are 

cropped more in this display compared to in the Experiment, and the instructions text was 

not displayed on the screen; observers were given the instructions at the beginning of the 

experiment.  
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Results and discussion 

The results of Experiment 8 are presented in Figure 4.10, which plots the number 

of times (out of 60) each instruction condition was chosen to have a match patch that 

was better matched in lightness to the homogeneous display. Each graph plots the 

preference for each test patch Munsell for a particular surround Munsell condition. 

Figure 4.10A shows the results for when the rocky displays were matte, and Figure 

4.10B shows the results for when the rocky displays were glossy. The results showed 

that as the test patches became closer in albedo to the surround, the matching patches 

from the contrast instruction condition were chosen to be more similar in lightness to 

the homogeneous display compared to the other two conditions. Note that these were 

the displays with the highest transmittance settings. There was no clear preference for 

test patches further away from the surround albedo. Figure 4.11 shows the data 

averaged across test patch Munsell value, plotted as percentage of times chosen 

(because surround Munsell 1.95 and 9.5 had fewer data points to average across). It is 

clear from this figure that, on average, observers perceived stimuli that were set from 

the contrast instructions condition to be better matched in lightness to the 

homogeneous displays. To statistically verify this, the data for each surround Munsell 

condition were subjected to paired t-tests comparing the percentage of times the 

contrast instructions condition was chosen over the no transmittance control condition. 

We chose to compare these two conditions because we wanted to compare stimuli 

containing the most transparency (contrast instructions) to the stimuli containing no 

transparency (no transmittance control). The t-tests revealed that stimuli from the 

contrast instructions condition were chosen reliably more often in all matte surround 

albedo conditions, and the last five (out of six) glossy surround albedo conditions (see 

Table 4.5 for t values, df and p values).16 

                                                           
 

16 Note that we could only validly compare two groups due to correlated measures (the 

percentage of times one group is chosen depends on the percentage of times the other two 

groups are chosen). If we compared the contrast instructions condition to the transmittance 

instructions conditions, the results are similar. For both matte and glossy conditions, stimuli 

from the contrast instructions condition were chosen reliably more often than stimuli from the 

transparency instructions condition, for the first five out of six surround albedo conditions, p < 

.05. 
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Figure 4.10. Results of Experiment 8 for the matte condition (A) and the glossy 

condition (B). Each graph shows the results for a particular surround Munsell value, and 

plots the number of times (out of 60) each instruction condition was chosen to best match 

the lightness of the test patch embedded in the homogeneous display. 

 

 

Figure 4.11. Results of Experiment 8, averaged across test patch Munsell. Each panel 

shows the percentage of times each instruction condition was chosen for each surround 

Munsell condition, for the matte condition (left) and the glossy condition (right). Error bars 

are standard error of the mean, and indicate inter-observer variability. Significance stars 

indicate when the contrast instructions condition was chosen reliably more than the no 

transmittance control. 

 

The above results suggest that in order to match the lightness of a test patch 

embedded in a homogeneous surround to a patch embedded in a “textured” display, an 

extra perceptual dimension is required that allows the observer to match the patches on 

contrast against the surround. Giving observers the ability to vary transparency allowed 

them to better match edge contrast. Thus, to make more satisfactory lightness matches, 

observers seem to require the ability to adjust a mid-level dimension (transparency) to 

match a low-level construct (contrast) as well as lightness. It is also plausible that mid-

level perceptual mechanisms caused the lightness shifts in low-contrast centre-
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surround displays without observers being explicitly aware of this. It is not possible to 

determine from the experiments so far whether mid-level or low-level mechanisms are 

dominant. However, we can conclude that observers can obtain more satisfactory 

matches to low-contrast homogeneous displays when they are allowed a second degree 

of freedom in their matches. Experiments 9 and 10 further investigate whether scission 

is responsible for the crispening effect. 

 

    Matte  Glossy 

Surround Munsell 

condition 
  t p   t p 

1.95   5.36 <.001*   1.30 .209 

3.5   3.71 .0015*   4.27 <.001* 

5   5.00 <.001*   5.25 <.001* 

6.5   4.86 .00237*   5.81 <.001* 

8   3.80 .0012*   3.55 .0021* 

9.5   4.00 <.001*   2.91 .0089* 

Table 4.5. t values and p values comparing preferences in Experiment 8 for the 

contrast instructions condition over the no transmittance control condition, for each 

surround Munsell condition and gloss level. * p < .05; df = 19 for all comparisons. 
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Experiment 9A and 9B: Investigating the Increment-Decrement 

Asymmetry 

A noteworthy aspect of the results from Experiment 1 was the asymmetry 

between increment and decrement lightness judgments for the homogeneous centre-

surround displays. The data revealed that increment settings were essentially 

independent of the surround reflectance, whereas decrement settings were more 

affected by the surround reflectance (illustrated by a greater spread in the data points 

for each test patch; Figure 2.6, top two rows). In Experiment 9, we investigate whether 

this asymmetry persists when observers are able to vary both lightness and 

transmittance of an adjustable display that is common to all surround albedo 

conditions.17 We were also interested to explore whether any asymmetries in lightness 

settings were accompanied by asymmetries in the transmittance settings. This 

experiment was similar to Experiment 7, except that lightness and transmittance could 

be adjusted in a matching surface that was common to all surround albedo conditions 

(this was not the case in Experiment 7). Experiment 9 had two parts.  In Experiment 9A, 

observers varied both the albedo and transmittance of the adjustable patch and the 

relationship between albedo and transmittance was observed. Experiment 9B was a 

control experiment where participants could only vary the albedo of the adjustable 

patch (the transmittance setting was not available). 

 

Methods 

Observers 

Four observers participated in Experiment 9. Observers RS, DC, SM and AS 

participated in Experiment 9A, and observers RS and DC participated in Experiment 9B. 

 

                                                           
 

17 Note that in Experiment 7, it was not possible to directly compare surround albedo conditions 

because a separate matching display was used in each condition. 
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Apparatus and stimuli 

The test stimuli were the same homogeneous centre-surround displays in 

Experiment 7. The matching display comprised of an adjustable filter overlaying a 

Brownian noise textured background (Figure 4.5B). The maximum luminance in the 

background was 32.49 cd/m2, which corresponded to the luminance of the lightest test 

patch in the homogeneous displays (Munsell 9.5). Unlike Experiment 7, the same 

matching display was used for all trials. The luminance values in the central disk in the 

adjustable display were created in the same way as in Experiment 7, using Metelli’s 

episcotister model (Equation 4.1). 

 

Procedure 

The procedure was the same as in Experiment 7. In each trial, a homogeneous 

centre-surround test surface (14.88) was presented on the computer screen. Below the 

target surface was the smaller adjustable surface (5.83). The surfaces were spatially 

separated by 11.47 (centre to centre) and were presented against a black background. 

In Experiment 9A, observers were given contrast instructions and were able to vary 

both the reflectance and the transmittance of the adjustable patch (see Experiment 7 

methods section). In Experiment 9B, observers were only able to vary the reflectance of 

the test patch, equivalent to the no-transmittance control condition in Experiment 7. 

Similar to Experiment 7, there were six surround Munsell conditions, and 13-15 test 

patch Munsell conditions. This resulted in 86 conditions. Each observer performed five 

repeats of each condition, resulting in a total of 430 trials. 

 

Results and discussion 

The results of Experiment 9 are presented in Figures 4.12 and 4.13. Figure 4.12 

shows the test patch lightness settings for Experiment 9A and Experiment 9B (Figure 

4.12A and 4.12B, respectively). Figure 4.13 plots the transmittance settings for 

Experiment 9A where observers were given contrast instructions. The crispening effect 

was observed both when observers were given contrast instructions (Figure 4.12A) and 

when observers were not able to vary transmittance (Figure 4.12B). Figure 4.12 shows 
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that the size of the steps is noticeably larger in the contrast instructions condition 

(Experiment 9A) compared to the no transmittance control (Experiment 9B). This is 

consistent with the results of Experiment 7. Additionally, in both Experiments 9A and 

9B there was an asymmetry between increment and decrement settings (i.e. the 

increment settings are overall less spread out, or less dependent on surround albedo, 

than decrement settings, as in Experiment 1). The increment settings exhibited a higher 

amount of spread for lighter test patches compared to Experiment 1. However, the 

spread in the increments was similar for Experiment 9A and the control Experiment 9B, 

which was essentially a replication of Experiment 1 homogeneous condition. 

Furthermore, the present results replicated the findings in Experiment 1 that 

decrement settings were more dependent on the surround albedo compared to 

increments, which were relatively independent of surround albedo. 

 

 

Figure 4.12. Test patch lightness settings for Experiment 9A (A) and Experiment 9B 

(B). 

 

Figure 4.13 plots the transmittance settings for Experiment 9A, where observers 

were given contrast instructions. Each graph plots the transmittance data for each 

surround Munsell condition. Transmittance settings were revealed to be similar to the 

contrast instructions of Experiment 7; transmittance settings increased as test patch 

reflectance became closer to the surround value (vertical dotted lines in Figure 4.13). 

Transmittance peaked between 0.3 and 0.5, which was slightly less than in Experiment 
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7, but much higher than the transparency condition in Experiment 7. This difference 

between experiments might be attributed to individual differences and/or differences 

in the matching display used in each experiment. The matching displays in Experiment 

7 contained rocky surrounds with the same albedo as the homogeneous displays 

(Figure 4.5A), whereas the matching displays in Experiment 9 contained a Brownian 

noise texture that was common to all surround-albedo conditions (Figure 4.5B). An 

interesting aspect of the transmittance settings in Figure 4.13 is that decrement settings 

appear to follow the same function for each surround, whereas the curve connecting the 

increment settings appears to get shallower as the surround Munsell value increases. 

This is better demonstrated in Figure 4.14A, where transmittance settings for each 

surround are plotted on top of one another. This was achieved by plotting the x-axis as 

test Munsell minus surround Munsell value. In this figure it is clear that the functions 

describing the increment settings are different whereas the functions describing the 

decrement settings are similar. This observation was supported statistically. The 

increment and decrement transmittance settings were log transformed, and linear 

functions were fit (via linear regression) for each surround Munsell condition (Figure 

4.14B). For the transformed data (Figure 4.14B), the slope of the line corresponds to 

how much transmittance settings changed as the test patch became closer in albedo to 

the surround. The further away from zero the slope is, the greater the change in 

transmittance settings between test patches. A comparison of the slopes revealed that 

for increments, there was a significant difference between the slopes, F(4, 29) = 3.25, p 

= .0256 (see Table 4.6 for the slope and y-intercept for each line). However, for 

decrements there was no significant difference between the slopes, F(4, 30) = 2.57, p = 

.0578.18 

                                                           
 

18 Since the slopes did not significantly differ for decrements, it was possible to calculate one 

slope for all the data. The pooled slope equalled 0.303. There was also no difference in the 

intercepts for decrements, F(4,30) = 1.211, p = .324. Thus there was a pooled y-intercept, which 

equalled 1.445. 
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Figure 4.13. Transmittance settings for Experiment 9A. Error bars are standard error of 

the mean, and represent the inter-observer variability for a particular condition. Note that 

error bars are much larger in this experiment compared to Experiment 7 because there were 

only four observers in Experiment 9A, compared to 20 observers in Experiment 7. 

 

The results displayed an asymmetry in increment and decrement lightness 

settings that was accompanied by the opposite increment-decrement asymmetry in the 

transmittance settings. In general, when a given test patch was a decrement, 

transmittance settings were similar, while lightness judgments decreased as surround 

albedo increased. Alternatively, when the test patch was an increment, lightness 

judgments were similar, while transmittance settings increased as surrounds became 

lighter. 

The above results suggest that if transparency (whether directly perceived or not) 

plays a role in perceived lightness of test patches embedded in homogeneous 

surrounds, then there is a relationship between the perceived lightness of a test patch 

on various surrounds and how much a target’s perceived transparency varies on 

different surrounds. If scission (whether directly perceived as transparency or not) 
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affects the perceived lightness of test patches embedded in homogeneous surrounds, 

then the following explanation could account for the results: In a given display, the 

luminance within the test patch region is decomposed into a foreground filter layer, and 

a background layer that is a continuation of the surround (i.e. the same lightness as the 

surround). For decrement displays, induction from different surround albedos causes 

test patches to appear lighter as the surround becomes darker. This induction is 

attributed to changes in test patch lightness, while transparency remains relatively 

constant. Alternatively, increment test patches remain similar in lightness independent 

of the surround. Thus, the different levels of induction from different surround albedos 

is attributed to changes in test patch transparency, while lightness remains relatively 

constant. 

 

 

Figure 4.14. Transformed transmittance data from Experiment 9A. (A) Transmittance 

settings for each surround are plotted on top of one another. This was achieved by plotting 

the x-axis as test Munsell minus surround Munsell value. (B) The increment and decrement 

transmittance settings were log transformed, and linear functions were fit via linear 

regression for each surround Munsell condition. See main body text and Table 4.6 for slopes 

and y-intercepts for each equation. 
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  Surround Munsell value 

 1.95  3.5  5  6.5  8 

Slope -0.113  -0.17  -0.237  -0.282  -0.3104 

Y-intercept 0.883   1.257   1.453   1.58   1.679 

Table 4.6. The slope and y-intercept for each function fitted to increments in Figure 

4.14.  

 

It is less clear how to interpret the relationship between lightness and 

transmittance settings if scission is not involved. However, the results provide insight 

into the increment settings, regardless of whether use of the transmittance setting taps 

into transparency or contrast mechanisms. Although the appearance of a test patch as 

an increment is relatively independent of surround albedo (i.e. it looks the same 

lightness regardless of surround), it still does not look identical. There are perceptual 

differences that cannot be captured by differences in lightness alone, but may be 

captured by a second dimension such as transparency or contrast. At this stage we 

remain agnostic as to whether this dimension is transparency or contrast. In the next 

experiment we matched homogeneous and variegated surfaces on test patch-surround 

contrast. We observed how crispening was affected by these low-contrast variegated 

surfaces, which were designed to disrupt the conditions for transparency. 
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Experiment 10: Low Contrast Surrounds 

The previous experiments in Chapter 4 investigated whether transparency is 

involved in the perception of the homogeneous centre-surround displays, or whether 

low-level mechanisms involving texture consistency (Experiment 6) or contrast 

between the centre and surround (Experiments 7, 8, and 9) modulate the appearance of 

these displays. The present experiment investigates the possibility that the crispening 

effect is caused by enhanced discrimination of test patches that are low in contrast 

against the homogeneous surround. In all previous experiments, the test patches in the 

homogeneous displays were full increments or full decrements against the surround, i.e. 

luminance values within the test patch were either all lighter or all darker than the 

surround. Alternatively, test patch luminance values in rocky displays were often 

between the lightest and darkest pixels in the surround. In Experiment 10, variegated 

displays with low contrast surrounds were created so that all test patches were either 

full increments or decrements against the surround, like in the homogeneous displays. 

We hypothesised that if transparency causes the crispening effect, then crispening 

should be eliminated when the conditions for transparency are disrupted (in the 

variegated condition). In contradistinction, if the crispening effect is caused by low-level 

mechanisms that enhance discrimination of test patches that are low in contrast against 

the surround, then crispening should be similar between the two conditions. 

 

Methods 

Observers 

Eight observers participated in Experiment 10. Four were undergraduate 

psychology students, and the other four were observers SM, KT, AS, and RS. 
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Figure 4.15. Stimuli used in Experiment 10. (A) Homogeneous centre-surround displays. 

(B) Variegated displays. (C) Close up of a variegated display. For illustration purposes, the 

contrast in the surround in (C) is enhanced to show the pattern of the wedges and ring. 

 

Apparatus and stimuli 

The test stimuli were centre-surround displays and are presented in Figure 4.15. 

They were created in Matlab and did not have physical (simulated) reflectances 

associated with them. The homogeneous centre-surround displays were similar to those 

used in previous experiments. The homogeneous surrounds were mid-grey (16.16 

cd/m2). The variegated surrounds consisted of wedges that were slightly lighter than 

mid-grey (light wedges, 16.21 cd/m2), and wedges that were slightly darker than mid-

grey (dark wedges, 15.65 cd/m2) surrounding a central circle. In addition to the wedges, 

a ring was placed around the central patch, which alternated from light to dark (the 

same luminance as the light and dark wedges, respectively). This ring was added to 

eliminate illusory filling of the surround wedges into the test patch region that occurred 

due to the extremely low contrast between the centre and the surround. The matching 

display was the same display used in Experiment 9 (Figure 4.5B). However, only 

lightness could be varied in the central patch, not transmittance. 

 

Procedure 

The procedure was the same as in previous lightness studies where observers 

could only vary the lightness of the adjustable patch. In each trial, a centre-surround 

test surface (8.68) was presented on the computer screen. Below the target surface 

was the adjustable surface (5.83). The surfaces were separated by 11.47 of visual 

angle (centre to centre) and were presented against a black background. 

There were two surround-type conditions (homogeneous and variegated), and 14 

test patch luminance conditions (8.36, 9.56, 10.90, 12.30, 13.71, 14.61, 15.38, 16.98, 

17.81, 18.65, 20.45, 22.31, 24.2, 26.12 cd/m2). This led to a total of 28 conditions. Each 

observer performed five repeats on each condition, leading to 140 trials for each 

observer. 
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Results and discussion 

The results of Experiment 10 are presented in Figure 4.16, which shows the test 

patch luminance settings for the homogeneous (left) and variegated (right) conditions. 

The crispening effect was clearly present in the homogeneous condition (Figure 4.16, 

left). There was a “step” in lightness as the test patch luminance passed through the 

surround. There was also evidence of crispening in the variegated condition (Figure 

4.16, right), but the size of the step was smaller than in the homogeneous condition. To 

further investigate crispening in the two conditions, the settings of the immediate 

increment and decrements were plotted in Figure 4.17. The red and blue dotted lines 

indicate the actual luminance of the immediate increment and decrement, respectively. 

The luminance settings showed that for both conditions, the perceived difference 

between increment and decrements was greater than the actual difference. This 

difference was larger, however, in the homogeneous centre-surround display. The 

above observations were statistically verified by subjecting the immediate increment 

and decrement luminance settings to a two-factor ANOVA, with display type 

(homogeneous, variegated) as one factor, and test patch (increment, decrement) as the 

other factor. The ANOVA revealed that there was a main effect of test patch, F(1,7) = 

28.94, p = .001. Averaging across display type, increments were perceived to be lighter 

than decrements. This result was entirely expected, as the increments were physically 

lighter than decrements. There was no main effect of display type, F(1,7) = 3.97, p = 

.0864. Averaging across test patch, there was no difference in luminance settings 

between the homogeneous and variegated display conditions. There was a significant 

interaction between display type and test patch, F(1,7) = 11.27, p = .0121, indicating 

that the difference between increment and decrement settings was larger for the 

homogeneous compared to the variegated surround conditions, i.e. crispening was 

larger in the homogeneous condition. Follow-up t-test indicated that the greater 

crispening was caused by both the decrement appearing darker in the homogeneous 

compared to the variegated condition, t(7) = 2.64, p = .0333, and the increment 

appearing lighter in the homogeneous compared to the variegated condition, t(7) = 

3.59, p = .00890. 
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Figure 4.16. Results of Experiment 10. Error bars are standard error of the mean, and 

represent the inter-observer variability for a particular condition. In a number of conditions, 

error bars are smaller than the data points, so are not visible. 

 

 

 

Figure 4.17. Immediate increment and decrement settings for each display type 

condition. The red and blue dotted lines indicate the actual luminance of the immediate 

increment and decrement, respectively. Error bars are standard error of the mean, and 

represent the inter-observer variability for a particular condition. 
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The above results suggest that scission may play a causal role in lightness 

perception in simple, homogeneous centre-surround displays. However, there was still 

a small amount of crispening present in the variegated displays, suggesting another 

reason for the different results between the two conditions. Although test patches were 

full increments and decrements relative to both the homogeneous and variegated 

surrounds, there was still higher contrast in the surround of the variegated displays 

compared to the homogeneous displays. This contrast in the surround may have been 

masking contrast effects between the surround and the centre patch, reducing the 

crispening effect. This may be similar to the masking artefact found in Experiment 6. 

Taken together, the results from the experiments in Chapter 4 suggest that a 

second perceptual dimension in addition to lightness is required to capture the 

appearance of low contrast test patches embedded in homogeneous surrounds. When 

observers matched test patch lightness in a homogeneous display to that in a “textured” 

or rocky display, they required the ability to vary both the lightness and transmittance 

of the patch on the textured display to obtain the most satisfactory matches 

(Experiments 7 and 8). However, observers only chose to vary transmittance to match 

the contrast of the patches against the surround, and not to explicitly match the amount 

of transparency in the displays. This, along with the results of Experiment 10, suggests 

that homogeneous displays differ from textured displays in perceived edge contrast 

between the central patch and the surround, and that the only way to match the unique 

appearance of the edge contrast in the homogeneous displays is to vary the mid-level 

property of transparency in the textured displays. Chapter 5 will discuss this further in 

relation to existing literature. 
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Chapter 5: General Discussion 

 

Summary of Experimental Results 

Chapters 2 and 3 investigated whether the visual system uses cues to the 

illuminant created by complex mesostructure and specular highlights to improve 

lightness constancy (i.e. the consistency of lightness judgments) of an embedded flat, 

matte test patch. Lightness constancy was examined across changes in background 

albedo (Experiments 1 and 5) and illumination level (Experiment 5). In Experiment 1, 

observers judged the lightness of test patches surrounded by four different surfaces: flat 

matte, flat glossy, rocky matte, and rocky glossy. When the surrounds were rocky, there 

was a smooth, monotonic relationship between perceived lightness and test patch 

reflectance (replicated in Experiment 6), with glossy surfaces yielding better lightness 

constancy across changes in background albedo than matte surfaces (replicated in 

Experiment 5). 

Control experiments and conditions tested whether any benefits of shading and 

specular reflections could be attributed to the range and/or number of luminance 

values in the surround (Experiment 2), the choice in matching patch surround 

(Experiment 3), differences in the energy across different spatial scales (Experiments 4 

and 5), or the number of interreflections rendered in the scene (Experiment 5). When 

the original rocky displays were compared to variegated control displays with matched 

pixel histograms (Experiment 2), lightness constancy was better for the rocky glossy 

compared to the variegated glossy equivalent displays. However, this difference in 

lightness constancy was eliminated when the control displays had equated power 

spectra to the rocky displays via phase scrambling (Experiment 4, replicated in 

Experiment 5). In Experiment 5, observers exhibited some degree of lightness 

constancy when illumination varied, as lightness judgments were between reflectance 

and luminance matching. However, lightness constancy did not differ between glossy 

and matte conditions when illumination varied. Test patch lightness was also unaffected 

by the number of interreflections. These results were similar for the rocky and control 

(phase-scrambled) displays. 
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When surrounds were flat, there was a nonlinear “step” or crispening (Takasaki, 

1966) in the pattern of matches as test patch reflectance passed through that of the 

surround (Experiment 1, replicated in Experiments 6, 7, 9, and 10). Furthermore, there 

was an asymmetry between increment and decrement settings (Experiment 1, 

replicated in Experiment 9). Lightness settings for decrements tended to decrease as 

surround albedo increased, whereas the induction for increments was independent of 

surround albedo. 

Chapter 4 investigated whether the pattern of results from the homogeneous 

centre-surround displays was caused by perceptual transparency, or whether other 

mechanisms were responsible, such as differences in centre-surround contrast between 

the test and matching displays (Experiments 7, 8, and 9), or an enhanced discrimination 

of full increment and decrement test patches that are low in contrast against the 

surround (Experiment 10). In Experiment 6, observers judged the lightness of test 

patches that had consistent or inconsistent textures with their surround. When the 

rocky surround texture continued into the central test patch, test patches at the 

increment-decrement transition were judged to be similar in lightness (flattening of the 

data curve), and a “step” in lightness occurred when the increments became visible 

against the surround. In Experiment 7, observers matched test patches embedded in 

homogeneous surrounds by varying the lightness and transmittance of an adjustable 

patch overlaying a rocky matching display. When instructed to match the centres on 

lightness and transparency, observers tended not to use the transmittance settings. 

However, when instructed to match the centres on lightness and perceived contrast 

against the surround, observers utilised the transmittance settings, making the 

adjustable patch more transparent with test patches that were lower in contrast against 

the surround. Furthermore, observers judged low contrast homogeneous displays to be 

better matched in lightness to the matching displays whose centres were more 

transparent, i.e. matches were better when settings were made by observers who were 

given contrast instructions (Experiment 8). Experiment 9 demonstrated that the 

asymmetry in lightness settings between increments and decrements was accompanied 

by the opposite asymmetry in transmittance settings. Lightness judgments for 

increments were relatively independent of surround albedo, but transmittance settings 

varied depending on the surround. Alternatively, lightness judgments for decrements 

depended on surround albedo, but transmittance settings were relatively independent 
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of the surround. Experiment 10 showed that crispening could be induced in variegated 

displays with extremely low contrast surrounds, where test patches were complete 

increments or decrements against the surround. However, the crispening effect in these 

displays was smaller compared to traditional homogeneous displays. 

 

Relation to Previous Work 

 

Lightness computations in complex displays 

Contrary to the hypothesis that originally motivated our experiments, we were 

unable to find support that the visual system computes surface lightness by forming a 

representation of the light field, such as in EIMs (Bloj et al., 2004; Boyaci et al., 2003, 

2004; for a review, see Brainard & Maloney, 2011). Our results suggest that, when 

computing test patch lightness, there is no benefit in observers’ lightness judgments for 

stimuli that contain surface relief, shadows, shading, and specular highlights. Rather, a 

low-level explanation involving contrast and luminance distributions across space and 

scale appear to be sufficient in explaining the pattern of results described above. 

One theory of lightness perception that does not require an explicit representation 

of the illuminant is anchoring theory (Gilchrist, 2006; Gilchrist et al., 1999). Anchoring 

theory proposes that the visual system assigns a fixed lightness value (white) to the 

highest luminance in a scene (or framework), which serves as a lightness anchor. Other 

values in lightness are computed relative to this anchor point by forming ratios relative 

to this anchor point. It is unclear how the principles of anchoring theory, such as the 

highest luminance rule, can be extended to naturalistic displays like those used in the 

present studies. Evidence supporting the anchoring rule comes from experiments that 

use simple displays such as dome experiments where the observers’ whole field of view 

consists of two luminance values divided by a simple edge (Li & Gilchrist, 1999), and 

Mondrian experiments where observers are presented with a flat 2D array of different 

reflectances illuminated by a hidden spotlight (Cataliotti & Gilchrist, 1995). However, 

the highest luminance in most natural scenes will not be generated by the surface with 

the highest diffuse reflectance, but rather by specular reflections of the primary light 
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source. Moreover, it is unclear how anchoring theory could account for the difference in 

lightness constancy between the variegated displays in Experiment 2 and the phase-

scrambled displays in Experiment 4, which had equated luminance histograms and 

therefore the same highest luminance. Anchoring theory asserts that the distance from 

the anchor does not affect the lightness of a surface (Cataliotti & Gilchrist, 1995; 

Gilchrist, 2006; Radonjić & Gilchrist, 2013). 

The anchoring to white rule is also inconsistent with findings in the literature from 

experiments that use more natural displays. Anderson et al. (2014) suggested that 

lightness and brightness were maximally conflated in the displays used to support 

anchoring theory. They demonstrated that observers did not always perceive the 

highest luminance to be white under more natural viewing conditions, where they were 

immersed in the same illumination field as the Mondrian display, or when a broad range 

of illumination conditions was simulated for Mondrians presented on a monitor. 

Additionally, a number of studies have shown that displays containing a single uniform 

albedo value with luminance variations caused by 3D structure do not always appear 

white, as would be predicted by anchoring theory (Gilchrist & Jacobsen, 1984; 

Motoyoshi et al., 2007; Ruppertsberg & Bloj, 2007; Sharan et al., 2008). Thus, there are 

many conditions where the highest luminance does not appear to serve as an anchor 

point when mapping luminance to lightness values. 

The principle of frameworks is also difficult to apply to natural scenes. Gilchrist 

defines frameworks as “a group of patches in the retinal images that are segregated, or a 

group of patches that belong together or are grouped together” (Gilchrist, 2006, p.297). 

The boundaries of frameworks are depth or shadow edges, so it is unclear how 

frameworks should be applied to scenes with continuous luminance variation produced 

by shading of 3D objects and surfaces, like the rocky surfaces used in the present 

experiments. Furthermore, the above definition does not clearly specify how to apply 

the rules of frameworks to an arbitrary scene. Fundamentally, for a given image it is 

often not clear a priori what would constitute a framework. Overall it is unclear how the 

principles of anchoring theory can be extended to complex displays such as those in the 

present thesis. 

One important consideration when interpreting the data from the rocky displays 

in Chapter 1 is that all surfaces were rendered under the same illuminant. 
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Consequently, test patch reflectance co-varied with luminance, meaning that observers 

could have performed the task by matching perceived luminance (brightness), not 

lightness. Thus, models that predict brightness could potentially account for the results. 

One such class of model are spatial filtering models, such as Blakeslee and McCourt’s 

ODOG model (Blakeslee & McCourt, 1999, 2001, 2004; Blakeslee et al., 2005; see 

Shapiro & Lu, 2011, for an alternative model). Such models have the potential for 

dealing with more natural stimuli than anchoring theory. However, as they stand they 

are unable to differentiate various causes of image structure, such as the shading and 

specular reflections in the displays used in the present experiments. 

Another potential problem with applying spatial filtering models to the present 

results is that they do not predict effects of illumination and transparency on 

brightness/lightness perception. Lightness and brightness can differ substantially when 

illumination is inhomogeneous (Blakeslee & McCourt, 2012). Indeed, for surfaces in 

Chapter 3, luminance differed substantially between test patches with the same 

reflectance under “bright” and “dim” illumination. Observers’ lightness judgments were 

between reflectance and luminance matches, suggesting that observers did not merely 

match test patches on brightness, i.e. they were at least somewhat matching lightness. 

This is supported by similar findings in the literature (e.g. Madigan & Brainard, 2014; 

Ripamonti et al., 2004). A number of lightness illusions in the literature suggest that 

perceptual decomposition into layers (or scission; see Anderson, 1997; Anderson & 

Winawer, 2005, 2008) may affect lightness perception under some circumstances. 

Examples include the shadow simultaneous contrast (SC) illusion (Williams, McCoy & 

Purves, 1998), the snake illusion (Adelson, 2000), the checker shadow illusion (Adelson, 

1995), the paint/shadow illusion (Hillis & Brainard, 2007), the argyle illusion (Adelson, 

1993), and the wall of blocks illusion (Adelson, 1993; Logvinenko, 1999; Logvinenko & 

Ross, 2005). In a recent study, Blakeslee and McCourt (2012) applied their ODOG model 

to predict brightness perception in these illusions. Their model predicted the 

approximate magnitude of brightness effects in some of these displays (shadow SC, 

snake, checker shadow, and the paint/shadow illusions), but not others (argyle and wall 

of blocks illusions). Nor did the model predict the large shifts in perceived lightness for 

displays with illumination/transparency boundaries. Future studies should investigate 

whether low-level accounts involving distributions of contrasts can extend to lightness 

effects in naturalistic displays with illumination changes (spatial or temporal) and/or 
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gradients, or whether mid-level (layered image decomposition) mechanisms may be 

involved. 

 

Lightness computations in simple displays 

The results from the homogeneous displays are in agreement with previous 

studies that have reported heightened discrimination for test patches that are close to 

the surround colour (Krauskopf & Gegenfurtner, 1992) or luminance (Whittle, 1992). 

Previous research has also reported asymmetries in luminance and colour judgments 

between increments and decrements (Bressan, 2006; Helson, 1938; Helson & Michels, 

1948; Bäuml, 2001, Heinemann, 1955). The experiments in Chapter 4 showed mixed 

results for whether the lightness effects in the homogeneous centre-surround displays 

were caused by mid-level mechanisms such as layered image decomposition, as 

suggested by Ekroll and Faul (2013), or whether low-level mechanisms are sufficient to 

explain the effects. For example, observers judged low contrast homogeneous displays 

to be more similar in lightness to rocky displays that contained transparent versus 

opaque test patches (Experiment 8), suggesting that the homogeneous displays were 

perceived to be transparent. Furthermore, the increment-decrement asymmetry in 

lightness was accompanied by a complementary asymmetry in transmittance matches, 

which is consistent with the idea that luminance variations in the increment displays 

were attributed to changes in test patch transparency (lightness remained relatively 

constant), and luminance variations in the decrement displays were attributed to 

changes in test patch lightness (transparency remained relatively constant). Finally, the 

crispening effect was larger in homogeneous displays versus low contrast variegated 

displays, where the conditions for transparency were disrupted but test patches 

remained full increments and decrements relative to the surround (Experiment 10). 

These findings support the idea that transparency plays a role in the appearance of 

homogeneous centre-surround displays. 

Though some of the results support a transparency explanation, it is not possible 

to rule out low-level contributions to the crispening effect. As mentioned above, 

crispening was larger for homogeneous versus low contrast variegated displays in 

Experiment 10. However, the variegated stimuli still induced some degree of crispening, 
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even though transparency was disrupted. Whittle (1992) suggested that neural signals 

are enhanced for low contrast centre-surround displays, leading to enhanced 

discrimination of test patches close in reflectance to their surround. The reduced 

crispening in the low contrast variegated displays compared to the homogeneous 

displays could have been caused by contrast in the surround masking contrast effects 

between the central patch and the surround. Another result that supports a contrast 

explanation of crispening is that observers did not substantially make use of the 

transmittance setting in Experiment 7 when asked to match the transparency of the test 

patch in the homogeneous displays. This finding is at odds with Ekroll and Faul’s (2013) 

findings with coloured stimuli, where observers adjusted transmittance when matching 

homogeneous and variegated displays on colour and transparency. It is possible that 

coloured centre-surround displays such as those used in Ekroll and Faul’s study evoke a 

more compelling percept of transparency, compared to achromatic displays. However, 

observers in Experiment 7 did vary transmittance when instructed to match the patches 

on contrast against the surround, and preferred these settings over settings that did not 

make the matching patch transparent (Experiment 8). This suggests that the efficacy of 

using transparent match displays may have been a result of transparency providing a 

natural means for equating both the contrast of the edges and the lightness of the target. 

This idea will be discussed later. 

 

Low-level explanations of lightness effects in simple displays 

The results discussed above demonstrate that it is difficult to tease apart low- and 

mid-level contributions to lightness phenomena in simple displays. Local contrast 

explanations of lightness perception in centre-surround displays have been challenged 

by findings in the literature (Gilchrist, 2006). A number of experiments have shown that 

simple centre-surround stimuli containing identical luminance values (i.e. the same 

centre-surround edge ratio) can produce very different effects on perceived lightness 

depending on the perceptual interpretation of the scene (Arend et al., 1971; Evans, 

1948; Gelb, 1932; Gilchrist, 1988; Gilchrist et al., 1983; Hsia, 1943; Jaensch & Müller, 

1920; Landauer & Rodger, 1964; Oyama, 1968). In these experiments, stimuli are 

similar to the simultaneous contrast display in Figure 1.1 with a target at the centre of 

each of two adjacent backgrounds. A shadow is cast over one half of the display (one 
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background and its target) and the reflectance of the other background is adjusted so 

that the two backgrounds are equiluminant. The result is a dark coloured background 

under bright illumination and a light coloured background under dim illumination. The 

observer adjusts the target on one of the backgrounds to match the target on the other 

background. Lightness theories based on local luminance ratios predict that observers 

would make the targets equiluminant because the backgrounds have the same 

luminance and this would make the target-surround contrast the same for each display. 

However, observers actually set the target patch on the light albedo background (under 

shadow) to be lower in luminance than the other patch, indicating that they take into 

account the shadow being cast on this surface. 

Other brightness models, such as filling-in models (e.g. Rudd, 2013), predict 

effects for simple centre-surround stimuli similar to those used in the present thesis. 

Rudd’s model predicts different induction effects for increments and decrements, 

although it does not predict the crispening effect. A limitation to the explanatory power 

of brightness models for simple displays is that there are often instances where surfaces 

appear to be the same lightness but vary in appearance in other ways. For example, 

these theories cannot explain how a white surface under dim illumination looks 

perceptually different from a white surface under bright illumination; they predict that 

the two white patches would look identical and, more importantly, indistinguishable, 

which they would not. Additionally, these theories cannot explain lightness perception 

in the case of transparency, where two colours are perceived in the same location, or a 

surface is seen through a transparent medium like fog or smoke (Metelli, 1970, 1974a, 

1974b). In the present experiments, the crispening effect is accompanied by a 

qualitatively different appearance of low contrast test patches, which cannot be 

explained by existing brightness models. 

 

Matching the unique perceptual quality of simple displays 

Other researchers have commented on the different perceptual quality of simple 

centre-surround displays (Logvinenko & Maloney, 2006; Vladusich, 2012, 2013; 

Vladusich et al., 2007), and the inability to satisfactorily match such displays by varying 

lightness/luminance alone (Brainard et al., 1997a; Katz, 1935; Maloney et al., 1995; 
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Wuerger et al., 1995). These researchers have suggested that multiple perceptual 

dimensions are needed to capture the full perceptual experience of achromatic surfaces. 

Vladusich et al. (2007) showed that as the contrast difference between test and 

matching displays increased, observers were progressively less able to produce perfect 

achromatic matches, as measured by a ten-point scale that rated the possibility of 

making a perfect match. Vladusich and colleagues have suggested that blackness and 

whiteness form the perceptual dimensions involved in the appearance of achromatic 

surfaces. However, they pointed out that their model incorrectly predicted the quality of 

match ratings in low-contrast centre-surround displays, and suggested that this may 

have to do with perceptual transparency. Similar to Vladusich, Logvinenko and 

colleagues (Logvinenko & Maloney, 2006; Logvinenko, et al., 2008; Logvinenko & 

Tokunaga, 2011; Tokunaga & Logvinenko, 2010a, 2010b) have argued that asymmetric 

matching can never lead to an exact match; observers can only set the minimum 

subjective difference between stimuli. In one experiment, Logvinenko and Maloney 

(2006) discarded the asymmetric matching method altogether, and had observers rate 

the dissimilarity of pairs of stimuli under different levels of illumination. They used a 

multidimensional scaling technique to plot and compare the similarity of each stimulus 

in a two dimensional space. They found that within an illuminant, achromatic colours 

fell along a single locus, forming a one-dimensional space. However, two distinct 

perceptual dimensions were needed to represent all of achromatic surface colour, and 

the second dimension (which they termed “brightness”) was associated with changes in 

illumination. Logvinenko and colleagues accounted for perceptual differences when 

surfaces were illuminated differently. However, they did not compare the appearance of 

achromatic surfaces in cases of transparency, where luminance values are perceptually 

divided into a background layer and transparent foreground layer. Our results, along 

with those of Ekroll and Faul (2013), suggest that asymmetric matching can lead to 

better matches when observers are able to vary the dimensions of lightness and 

transmittance. 

If perceptual transparency does affect the lightness of test patches embedded in 

homogeneous surrounds, as suggested by some of the results in Chapter 4 and Ekroll 

and Faul’s (2013) findings, then it suggests that two separate mechanisms may be 

responsible for the perception of lightness in complex and homogeneous centre-

surround displays: The effects of complex surface mesostructure and surface optics on 
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lightness can be well explained by low-level contrast and luminance distributions across 

space and scale; conversely, lightness in homogeneous displays, which are descriptively 

simple, may involve segmentation of surfaces into layered image representations. 

Paradoxically, the homogeneous displays might evoke more complex scene 

representations than the ostensibly complex rocky displays. We suggest that if 

transparency or scission is responsible for the crispening effect, then representations of 

transparency need not be directly measurable or quantifiable, similar to observers’ 

difficulty when matching illumination level (e.g. Rutherford & Brainard, 2002). 

Anderson and colleagues (Anderson, 1997, 1999, 2003a, 2003b; Anderson & Winawer, 

2005, 2008) showed that geometric continuity of targets and surrounds, and consistent 

polarity relationships of the borders separating targets from the surrounds, determine 

how (or whether) scission is initiated and luminance values are separated into a 

foreground (see-through) and background layer. This in turn determines how (or if) 

luminance is partitioned between the different layers. Homogeneous centre-surround 

displays meet the conditions for this perceptual image decomposition. There is a 

“continuity” of the homogeneous surround and centre, although the distinct lack of 

geometry makes it ambiguous how luminance should be partitioned between the 

different layers. This ambiguity might be reflected in perception: homogeneous displays 

may evoke a weaker sense of transparency, and/or observers may not have perceptual 

access to this representation. 

One clear result from Chapter 4 was that observers used transparent match 

displays to equate both the contrast of the edges and the lightness of the target in the 

homogeneous displays. Furthermore, observers preferred to match homogeneous 

displays to these transparent displays, over opaque matching displays. This suggests 

that observers require mid-level properties such as transparency to be varied in order 

to obtain more satisfactory matches to homogeneous displays, irrespective of any 

impressions of transparency. In these displays, low-level features such as edge contrast 

co-vary with lightness, and is something to which observers appear to have explicit 

perceptual access. Thus, observers may have been more effectively able to (and willing) 

to vary transmittance to match the contrast of the homogeneous centre-surround 

displays. 
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Relation to the simultaneous contrast effect 

Regardless of whether lightness representations differ for homogeneous and 

inhomogeneous displays, the difference in the pattern of data between these two types 

of displays has important implications for a large body of literature investigating the 

simultaneous contrast (SC) effect. Previous studies have compared the size of the SC 

effect in uniform versus variegated centre-surround displays. It is often reported that SC 

is enhanced when surrounds are articulated (Adelson, 2000; Arend & Goldstein, 1987; 

Bressan & Actis-Grosso, 2006; Gilchrist et al., 1999; Schirillo, 1999a, 1999b), suggesting 

either poorer or better lightness constancy for articulated displays, depending on the 

experimental context. These displays are similar to the homogeneous (Experiment 1) 

and variegated (Experiment 2) displays used in the present study. Our results suggest 

that the enhanced SC effect for variegated displays may be a result of researchers 

evaluating lightness constancy using only a few test patch and surround values (another 

possibility is a failure to adequately equate the luminance of the surrounds). One 

advantage of the factorial combination of conditions used in Chapter 2 is that it reveals 

the complicated nature of the SC effect on homogeneous surrounds. For uniform 

displays, the SC effect clearly depends on the test patch’s contrast against its surround 

(crispening). At low contrasts, these test patches seem to take on a qualitatively 

different appearance compared to test patches embedded in rocky or variegated 

displays. Therefore, it may not be meaningful to compare lightness constancy between 

uniform and articulated SC displays for single target and surround combinations. 

We also note the large size of the SC effect in our experiments. In Chapter 1, 

perceived lightness of identical targets differed by as much as 4 Munsell steps when 

embedded in different surrounds. Even in the rocky glossy conditions, perceived 

lightness could differ by 2 Munsell steps or more. These effects are much larger than 

what is normally reported in the literature, which is about 0.5 to 1 Munsell step 

(Gilchrist, 2006). We are unsure why the effect is so strong for these stimuli, although 

we suspect it also has to do with the large range of test patch and surround reflectance 

values that were used. 

The surfaces in the present study were different from simultaneous contrast (or 

centre-surround) displays that have previously dominated the literature. Previous 

studies have used physical experimental chambers with simple display setups and 
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lighting (e.g. Blakeslee et al., 2008; Heinemann, 1955; Katona, 1935; Kraft & Brainard, 

1999; Oyama, 1968), or computer generated displays with luminance values that are 

not separable into reflectance and illumination (e.g. Arend & Goldstein, 1987; Bäuml, 

2001; Bressan & Actis-Grosso, 2006; Dixon & Shapiro, 2014; Laurinen et al., 1997; 

Schirillo, 1999a, 1999b; Soranzo & Agostini, 2004). There have been various reports 

that images presented on CRT monitors lead to different effects than directly viewed 

scenes (Agostini & Bruno, 1996; Brainard et al., 1997b; Kraft et al., 2002; Schirillo et al., 

1990). The surfaces in the present experiments were computer rendered displays with 

simulated surface reflectance properties and complex illumination. We suggest that 

such displays could reduce perceptual differences between simulated and natural 

viewing because they allow for more information-rich conditions while maintaining 

controlled environments. 

One limitation of rendered environments is that CRT monitors cannot capture the 

high dynamic range of luminance values experienced in natural scenes. In the present 

studies we compressed bright specular highlights to fit the luminance range of the 

monitor, which may have influenced their effectiveness as a potential cue to the 

illumination. However, using rendered scenes allowed us to test large factorial 

combinations of conditions, something that would not be feasible using real surfaces. It 

also allowed us to embed the scenes in a complex, natural light field, which is nearly 

impossible to control in physical laboratory setups. The findings in the present 

experiments are relevant to planar displays with surrounds containing one uniform 

reflectance value. The displays contained medium-scale surface relief but were globally 

planar surfaces viewed frontally. Future research should investigate whether the 

present findings extend to surfaces that vary in shape or orientation with respect to the 

light source, or surfaces with more than one albedo value in the surround. The 

experiments in the present thesis were intended as a first step to demonstrate the 

potential of using rendered environments to conduct controlled experiments with 

information-rich stimuli, while still being relatable to other lightness studies using 

centre-surround displays. 
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Conclusions 

The experiments in the present thesis were unable to find support that the visual 

system computes surface lightness by forming a representation of the light field. 

Lightness perception in the complex displays used herein is well explained by low-level 

distributions of contrasts across space and scale (Chapter 2). Low-level explanations 

can also extend to complex displays under different levels of illumination (Chapter 3), 

but further investigation is required to determine whether this is true for cases of 

inhomogeneous illumination, such as scenes that contain illumination boundaries 

and/or gradients. Different mechanisms may play a role in the appearance of test 

patches embedded in homogeneous surrounds (Chapter 4). For such simple displays, it 

is arguably impossible to obtain a perfect control to rule out low-level effects on 

lightness. Dissociating mid-level transparency explanations from low-level contrast 

explanations will always be problematic, as by definition information is processed by 

the retina prior to higher visual processing areas responsible for the mid-level 

segmentation of surfaces. It is clear that targets embedded in homogeneous displays 

cannot be perfectly matched to targets on textured displays by varying lightness alone; 

a second perceptual dimension is required. Giving observers access to mid-level 

dimensions such as transparency provides a natural means for equating the contrast of 

the edges and the lightness of the target in homogeneous centre-surround displays. 

Thus, mid-level dimensions such as transmittance are at least required as 

methodological tools in order to tap into low-level perceptual dimensions such as 

perceived contrast. 
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