2,118 research outputs found

    Carbon-rich presolar grains from massive stars : subsolar Ā¹Ā²C/Ā¹Ā³C and Ā¹ā“N/Ā¹āµN ratios and the mystery of Ā¹āµN

    Get PDF
    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing Ā¹Ā²C/Ā¹Ā³C and Ā¹ā“N/Ā¹āµN ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of Ā¹Ā³C and Ā¹āµN. The short-lived radionuclides Ā²Ā²Na and Ā²ā¶Al are increased by orders of magnitude. The production of radiogenic Ā²Ā²Ne from the decay of Ā²Ā²Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with Ā¹ā“N/Ā¹āµN ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of Ā¹ā“N and Ā¹āµN in the Galaxy, helping to produce the Ā¹ā“N/Ā¹āµN ratio in the solar system

    Challenging the orthodoxy: union learning representatives as organic intellectuals

    Get PDF
    Teacher education and continuing professional development have become a key areas of controversy in England since the period of school sector restructuring following the 1988 Education Reform Act. More recently teacher training and professional development have often been used to promote and reinforce a narrow focus on the governmentā€™s ā€˜standards agendaā€™. However, the emerging discourse of ā€˜new professionalismā€™ has raised the profile of professional development in schools, and together with union learning representatives, there are opportunities to secure real improvements in teachersā€™ access to continuing professional development. This paper argues however that union learning representatives must go beyond advocating for better access to professional development and should raise more fundamental questions about the nature of professional development and the education system it serves. Drawing on Gramsciā€™s notion of the ā€˜organic intellectualā€™, the paper argues that union learning representatives have a key role as organisers of ideas ā€“ creating spaces in which the ideological dominance of current policy orthodoxy might be challenged

    Double Neutron Star Systems and Natal Neutron Star Kicks

    Get PDF
    We study the four double neutron star systems found in the Galactic disk in terms of the orbital characteristics of their immediate progenitors and the natal kicks imparted to neutron stars. Analysis of the effect of the second supernova explosion on the orbital dynamics, combined with recent results from simulations of rapid accretion onto neutron stars lead us to conclude that the observed systems could not have been formed had the explosion been symmetric. Their formation becomes possible if kicks are imparted to the radio-pulsar companions at birth. We identify the constraints imposed on the immediate progenitors of the observed double neutron stars and calculate the ranges within which their binary characteristics (orbital separations and masses of the exploding stars) are restricted. We also study the dependence of these limits on the magnitude of the kick velocity and the time elapsed since the second explosion. For each of the double neutron stars, we derive a minimum kick magnitude required for their formation, and for the two systems in close orbits we find it to exceed 200km/s. Lower limits are also set to the center-of-mass velocities of double neutron stars, and we find them to be consistent with the current proper motion observations.Comment: 25 pages, 6 figs (9 parts), 4 tables, AASTeX, Accepted in Ap

    Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology

    Get PDF
    In proto-neutron stars with strong magnetic fields, the cross section for Ī½e\nu_e (Ī½Ė‰e\bar\nu_e) absorption on neutrons (protons) depends on the local magnetic field strength due to the quantization of energy levels for the eāˆ’e^- (e+e^+) produced in the final state. If the neutron star possesses an asymmetric magnetic field topology in the sense that the magnitude of magnetic field in the north pole is different from that in the south pole, then asymmetric neutrino emission may be generated. We calculate the absorption cross sections of \nue and \bnue in strong magnetic fields as a function of the neutrino energy. These cross sections exhibit oscillatory behaviors which occur because new Landau levels for the eāˆ’e^- (e+e^+) become accessible as the neutrino energy increases. By evaluating the appropriately averaged neutrino opacities, we demonstrate that the change in the local neutrino flux due to the modified opacities is rather small. To generate appreciable kick velocity (āˆ¼300\sim 300 km~sāˆ’1^{-1}) to the newly-formed neutron star, the difference in the field strengths at the two opposite poles of the star must be at least 101610^{16}~G. We also consider the magnetic field effect on the spectral neutrino energy fluxes. The oscillatory features in the absorption opacities give rise to modulations in the emergent spectra of Ī½e\nu_e and Ī½Ė‰e\bar\nu_e.Comment: AASTeX, 25 pages. Expanded introduction and references. This revised version was accepted by ApJ in April 1998 (to appear in the Oct 1 issue

    Elemental bio-imaging of melanoma in lymph node biopsies

    Full text link
    The spatial distribution of trace elements in human lymph nodes partially infiltrated by melanoma cells was determined by elemental bio-imaging. Imaging of 31P within the nodal capsule and normal lymph node tissue showed a clear demarcation of the tumour boundary, with a significant decrease in relative 31P concentration within the tumour. The location of the tumour boundary was confirmed by haematoxylin and eosin staining of serial sections and observation by light microscopy. Further enhancement of the tumour boundary was achieved by imaging the 31P/34S ratio. 31P/66Zn ratio images showed a decreasing ratio beyond the tumour boundary that extended into peritumour normal lymph node tissue. Ā© The Royal Society of Chemistry

    Helium Star/Black Hole Mergers: a New Gamma-Ray Burst Model

    Full text link
    We present a model for gamma-ray bursts (GRB's) in which a stellar mass black hole acquires a massive accretion disk by merging with the helium core of its red giant companion. The black hole enters the helium core after it, or its neutron star progenitor, first experiences a common envelope phase that carries it inwards through the hydrogen envelope. Accretion of the last several solar masses of helium occurs on a time scale of roughly a minute and provides a neutrino luminosity of approximately 10^51 - 10^52 erg/s. Neutrino annihilation, 0.01% to 0.1% efficient, along the rotational axis then gives a baryon loaded fireball of electron-positron pairs and radiation (about 1050^{50} erg total) whose beaming and relativistic interaction with circumstellar material makes the GRB (e.g., Rees & Meszaros 1992). The useful energy can be greatly increased if energy can be extracted from the rotational energy of the black hole by magnetic interaction with the disk. Such events should occur at a rate comparable to that of merging neutron stars and black hole neutron star pairs and may be responsible for long complex GRB's, but not short hard ones.Comment: 11 pages total, 2 Figures - altered and revised for ApJ letters, accepte

    Gravitational-wave astronomy: the high-frequency window

    Full text link
    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer School on the Early Universe, Syros, Greece, September 200

    Parallelization of Kinetic Theory Simulations

    Full text link
    Numerical studies of shock waves in large scale systems via kinetic simulations with millions of particles are too computationally demanding to be processed in serial. In this work we focus on optimizing the parallel performance of a kinetic Monte Carlo code for astrophysical simulations such as core-collapse supernovae. Our goal is to attain a flexible program that scales well with the architecture of modern supercomputers. This approach requires a hybrid model of programming that combines a message passing interface (MPI) with a multithreading model (OpenMP) in C++. We report on our approach to implement the hybrid design into the kinetic code and show first results which demonstrate a significant gain in performance when many processors are applied.Comment: 10 pages, 3 figures, conference proceeding
    • ā€¦
    corecore