7,310 research outputs found
An optical nanocavity incorporating a fluorescent organic dye having a high quality factor
We have fabricated an L3 optical nanocavity operating at visible wavelengths that is coated with a thin-film of a fluorescent molecular-dye. The cavity was directly fabricated into a pre-etched, free-standing silicon-nitride (SIN) membrane and had a quality factor of Q = 2650. This relatively high Q-factor approaches the theoretical limit that can be expected from an L3 nanocavity using silicon nitride as a dielectric material and is achieved as a result of the solvent-free cavity-fabrication protocol that we have developed. We show that the fluorescence from a red-emitting fluorescent dye coated onto the cavity surface undergoes strong emission intensity enhancement at a series of discrete wavelengths corresponding to the cavity modes. Three dimensional finite difference time domain (FDTD) calculations are used to predict the mode structure of the cavities with excellent agreement demonstrated between theory and experiment
Improving the mass determination of Galactic Cepheids
We have selected a sample of Galactic Cepheids for which accurate estimates
of radii, distances, and photometric parameters are available. The comparison
between their pulsation masses, based on new Period-Mass-Radius (PMR)
relations, and their evolutionary masses, based on both optical and NIR
Color-Magnitude (CM) diagrams, suggests that pulsation masses are on average of
the order of 10% smaller than the evolutionary masses. Current pulsation masses
show, at fixed radius, a strongly reduced dispersion when compared with values
published in literature.The increased precision in the pulsation masses is due
to the fact that our predicted PMR relations based on nonlinear, convective
Cepheid models present smaller standard deviations than PMR relations based on
linear models. At the same time, the empirical radii of our Cepheid sample are
typically accurate at the 5% level. Our evolutionary mass determinations are
based on stellar models constructed by neglecting the effect of mass-loss
during the He burning phase. Therefore, the difference between pulsation and
evolutionary masses could be intrinsic and does not necessarily imply a problem
with either evolutionary and/or nonlinear pulsation models. The marginal
evidence of a trend in the difference between evolutionary and pulsation masses
when moving from short to long-period Cepheids is also briefly discussed. The
main finding of our investigation is that the long-standing Cepheid mass
discrepancy seems now resolved at the 10% level either if account for canonical
or mild convective core overshooting evolutionary models.Comment: 14 pages, 4 postscript figures, accepted for publication on ApJ
Letter
Addressing the Confusion Within Periodization Research
In this editorial, we focus on recent problematic developments in sport science, and more specifically, problems related to periodization research. Primary areas discussed are (1) appreciation of history, (2) considerations for training studies, (3) the development of concepts, and (4) programming-driven training models
Addressing the confusion within periodization research
© 2020 by the authors. In this editorial, we focus on recent problematic developments in sport science, and more specifically, problems related to periodization research. Primary areas discussed are (1) appreciation of history, (2) considerations for training studies, (3) the development of concepts, and (4) programming-driven training models
Addressing the Confusion within Periodization Research
In this editorial, we focus on recent problematic developments in sport science, and more specifically, problems related to periodization research. Primary areas discussed are (1) appreciation of history, (2) considerations for training studies, (3) the development of concepts, and (4) programming-driven training models
Mass zeros in the one-loop effective actions of QED in 1+1 and 3+1 dimensions
It is known that the one-loop effective action of is a quadratic in
the field strength when the fermion mass is zero: all potential higher order
contributions beyond second order vanish. For nonzero fermion mass it is shown
that this behavior persists for a general class of fields for at least one
value of the fermion mass when the external field's flux satisfies
. For the mass-shell renormalized one-loop effective
action vanishes for at least one value of the fermion mass for a class of
smooth, square integrable background gauge fields provided a plausible
zero-mass limit exists.Comment: Section IV has been amende
Constraints on Galaxy Bias, Matter Density, and Primordial Non--Gausianity from the PSCz Galaxy Redshift Survey
We compute the bispectrum for the \IRAS PSCz catalog and find that the galaxy
distribution displays the characteristic signature of gravity. Assuming
Gaussian initial conditions, we obtain galaxy biasing parameters
and , with no sign of
scale-dependent bias for h/Mpc. These results impose stringent
constraints on non-Gaussian initial conditions. For dimensional scaling models
with statistics, we find N>49, which implies a constraint on
primordial skewness .Comment: 4 pages, 3 embedded figures, uses revtex style file, minor changes to
reflect published versio
Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots
We report significant deviations from the usual quadratic dependence of the
ground state interband transition energy on applied electric fields in
InAs/GaAs self-assembled quantum dots. In particular, we show that conventional
second-order perturbation theory fails to correctly describe the Stark shift
for electric field below kV/cm in high dots. Eight-band calculations demonstrate this effect is predominantly due to
the three-dimensional strain field distribution which for various dot shapes
and stoichiometric compositions drastically affects the hole ground state. Our
conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure
Gravitino constraints on models of neutrino masses and leptogenesis
In the supersymmetric extensions of the standard model, neutrino masses and
leptogenesis requires existence of new particles. We point out that if these
particles with lepton number violating interactions have standard model gauge
interactions, then they may not be created after reheating because of the
gravitino problem. This will rule out all existing models of neutrino masses
and leptogenesis, except the one with right-handed singlet neutrinos.Comment: 12 pages latex file with one postscript figur
- …