194 research outputs found

    Extrinsic and intrinsic determinants of nerve regeneration

    Get PDF
    After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury

    Variability in Isotope Discrimination Factors in Coral Reef Fishes: Implications for Diet and Food Web Reconstruction

    Get PDF
    Interpretation of stable isotope ratios of carbon and nitrogen (δ13C and δ15N) is generally based on the assumption that with each trophic level there is a constant enrichment in the heavier isotope, leading to diet-tissue discrimination factors of 3.4‰ for 15N (ΔN) and ∼0.5‰ for 13C (ΔC). Diet-tissue discrimination factors determined from paired tissue and gut samples taken from 152 individuals from 26 fish species at Ningaloo Reef, Western Australia demonstrate a large amount of variability around constant values. While caution is necessary in using gut contents to represent diet due to the potential for high temporal variability, there were significant effects of trophic position and season that may also lead to variability in ΔN under natural conditions. Nitrogen enrichment increased significantly at higher trophic levels (higher tissue δ15N), with significantly higher ΔN in carnivorous species. Changes in diet led to significant changes in ΔN, but not tissue δ15N, between seasons for several species: Acanthurus triostegus, Chromis viridis, Parupeneus signatus and Pomacentrus moluccensis. These results confirm that the use of meta-analysis averages for ΔN is likely to be inappropriate for accurately determining diets and trophic relationships using tissue stable isotope ratios. Where feasible, discrimination factors should be directly quantified for each species and trophic link in question, acknowledging the potential for significant variation away from meta-analysis averages and, perhaps, controlled laboratory diets and conditions

    Temporal and spatial variability in stable isotope ratios of SPM link to local hydrography and longer term SPM averages suggest heavy dependence of mussels on nearshore production

    Get PDF
    Temporal changes in hydrography affect suspended particulate matter (SPM) composition and distribution in coastal systems, potentially influencing the diets of suspension feeders. Temporal variation in SPM and in the diet of the mussel Perna perna, were investigated using stable isotope analysis. The δ13C and δ15 N ratios of SPM, mussels and macroalgae were determined monthly, with SPM samples collected along a 10 km onshore–offshore transect, over 14 months at Kenton-on-Sea, on the south coast of South Africa. Clear nearshore (0 km) to offshore (10 km) carbon depletion gradients were seen in SPM during all months and extended for 50 km offshore on one occasion. Carbon enrichment of coastal SPM in winter (June–August 2004 and May 2005) indicated temporal changes in the nearshore detrital pool, presumably reflecting changes in macroalgal detritus, linked to local changes in coastal hydrography and algal seasonality. Nitrogen patterns were less clear, with SPM enrichment seen between July and October 2004 from 0 to 10 km. Nearshore SPM demonstrated cyclical patterns in carbon over 24-h periods that correlated closely with tidal cycles and mussel carbon signatures, sampled monthly, demonstrated fluctuations that could not be correlated to seasonal or monthly changes in SPM. Macroalgae showed extreme variability in isotopic signatures, with no discernable patterns. IsoSource mixing models indicated over 50% reliance of mussel tissue on nearshore carbon, highlighting the importance of nearshore SPM in mussel diet. Overall, carbon variation in SPM at both large and small temporal scales can be related to hydrographic processes, but is masked in mussels by long-term isotope integration
    corecore