1,974 research outputs found
Characterization of mouse neuro-urological dynamics in a novel decerebrate arterially perfused mouse (DAPM) preparation
Aim: To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. Methods: Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer’s solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a “pithed” DAPM which has no brainstem or spinal cord control. Results: Functional micturition cycles were observed in response to bladder filling. During each void, the bladder showed strong contractions and the external urethral sphincter (EUS) showed bursting activity. Both the frequency and amplitude of non-voiding contractions (NVCs) in DAPM and putative micromotions (pMM) in pithed DAPM increased with bladder filling. Vasopressin (>400 pM) caused dyssynergy of the LUT resulting in retention in DAPM as it increased tonic EUS activity and basal bladder pressure in a dose-dependent manner (basal pressure increase also noted in pithed DAPM). Both neuromuscular blockade (vecuronium) and autonomic ganglion blockade (hexamethonium), initially caused incomplete voiding, and both drugs eventually stopped voiding in DAPM. Intravesical acetic acid (0.2%) decreased the micturition interval. Recordings from the pelvic nerve in the pithed DAPM showed bladder distention-induced activity in the non-noxious range which was associated with pMM. Conclusions: This study demonstrates the utility of the DAPM which allows a detailed characterization of LUT function in mice
Contractile function of detrusor smooth muscle from children with posterior urethral valves – the role of fibrosis
Introduction: Posterior urethral valves (PUV) is the most common cause of congenital bladder outflow obstruction with persistent lower urinary tract and renal morbidities. There is a spectrum of functional bladder disorders ranging from hypertonia to bladder underactivity, but the aetiology of these clinical conditions remains unclear. /
Aims and objectives: We tested the hypothesis that replacement of detrusor muscle with non-muscle cells and excessive deposition of connective tissue is an important factor in bladder dysfunction with PUV. We used isolated detrusor samples from children with PUV and undergoing primary or secondary procedures in comparison to age-matched data from children with functionally normal bladders. In vitro contractile properties, as well as passive stiffness, were measured and matched to histological assessment of muscle and connective tissue. We examined if a major pathway for fibrosis was altered in PUV tissue samples. /
Methods: Isometric contractions were measured in vitro in response to either stimulation of motor nerves to detrusor or exposure to cholinergic and purinergic receptor agonists. Passive mechanical stiffness was measured by rapid stretching of the tissue and recording changes to muscle tension. Histology measured the relative amounts of detrusor muscle and connective tissue. Multiplex quantitative immunofluorescence labelling using five epitope markers was designed to determine cellular pathways, in particular the Wnt-signalling pathway, responsible for any changes to excessive deposition of connective tissue. /
Results and Discussion: PUV tissue showed equally reduced contractile function to efferent nerve stimulation or exposure to contractile agonists. Passive muscle stiffness was increased in PUV tissue samples. The smooth muscle:connective tissue ratio was also diminished and mirrored the reduction of contractile function and the increase of passive stiffness. Immunofluorescence labelling showed in PUV samples increased expression of the matrix metalloproteinase, MMP-7; as well as cyclin-D1 expression suggesting cellular remodelling. However, elements of a fibrosis pathway associated with Wnt-signalling were either reduced (β-catenin) or unchanged (c-Myc). The accumulation of extracellular matrix, containing collagen, will contribute to the reduced contractile performance of the bladder wall. It will also increase tissue stiffness that in vivo would lead to reduced filling compliance. /
Conclusions: Replacement of smooth muscle with fibrosis is a major contributory factor in contractile dysfunction in the hypertonic PUV bladder. This suggests that a potential strategy to restore normal contractile and filling properties is development of the effective use of antifibrotic agents
Enhanced flight performance by genetic manipulation of wing shape in Drosophila
Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals
Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington’s nucleus CRH neurons
Micturition requires precise control of bladder and urethral sphincter via parasympathetic, sympathetic and somatic motoneurons. This involves a spino-bulbospinal control circuit incorporating Barrington’s nucleus in the pons (Barr). Ponto-spinal glutamatergic neurons that express corticotrophin-releasing hormone (CRH) form one of the largest Barr cell populations. BarrCRH neurons can generate bladder contractions, but it is unknown whether they act as a simple switch or provide a high-fidelity pre-parasympathetic motor drive and whether their activation can actually trigger voids. Combined opto- and chemo-genetic manipulations along with multisite extracellular recordings in urethane anaesthetised CRHCre mice show that BarrCRH neurons provide a probabilistic drive that generates co-ordinated voids or non-voiding contractions depending on the phase of the micturition cycle. CRH itself provides negative feedback regulation of this process. These findings inform a new inferential model of autonomous micturition and emphasise the importance of the state of the spinal gating circuit in the generation of voiding
Biofilter aquaponic system for nutrients removal from fresh market wastewater
Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes
<p>Abstract</p> <p>Background</p> <p>Kraits (genus <it>Bungarus</it>) and cobras (genus <it>Naja</it>) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for <it>Bungarus multicinctus </it>and <it>Naja atra</it>, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; <it>i.e</it>., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP).</p> <p>Results</p> <p>In total, 1092 valid expressed sequences tags (ESTs) for <it>B. multicinctus </it>and 1166 ESTs for <it>N. atra </it>were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and <it>β </it>bungarotoxin (25.1%) comprise the main toxin classes in <it>B. multicinctus</it>, while 3FTx (95.8%) is the dominant toxin in <it>N. atra</it>. We also observed several less abundant venom families in <it>B. multicinctus </it>and <it>N. atra</it>, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in <it>B. multicinctus</it>. A total of 71 positive toxin BAC clones in <it>B. multicinctus </it>and <it>N. atra </it>were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-postive BACs were sequenced to reveal gene structures of 3FTx toxin genes.</p> <p>Conclusions</p> <p>Based on the toxin ESTs and 3FTx gene sequences, the major components of <it>B. multicinctus </it>venom transcriptome are neurotoxins, including long chain alpha neurotoxins (<it>α</it>-ntx) and the recently originated <it>β </it>bungarotoxin, whereas the <it>N. atra </it>venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain <it>α</it>-ntx). The data also revealed that tandem duplications contributed the most to the expansion of toxin multigene families. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (<it>dN</it>/<it>dS</it>) indicates that not only multigene toxin families but also other less abundant toxins might have been under rapid diversifying evolution.</p
Experimental demonstration of quantum correlations over more than 10 km
Energy and time entangled photons at a wavelength of 1310 nm are produced by
parametric downconversion in a KNbO3 crystal and are sent into all-fiber
interferometers using a telecom fiber network. The two interferometers of this
Franson-type test of the Bell-inequality are located 10.9 km apart from one
another. Two-photon fringe visibilities of up to 81.6 % are obtained. These
strong nonlocal correlations support the nonlocal predictions of quantum
mechanics and provide evidence that entanglement between photons can be
maintained over long distances.Comment: 5 pages, REVTeX, 3 postscript figures include
What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017
Introduction: Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. Methods: A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. Results: The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. Conclusions: Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology
Violation of Bell inequalities by photons more than 10 km apart
A Franson-type test of Bell inequalities by photons 10.9 km apart is
presented. Energy-time entangled photon-pairs are measured using two-channel
analyzers, leading to a violation of the inequalities by 16 standard deviations
without subtracting accidental coincidences. Subtracting them, a 2-photon
interference visibility of 95.5% is observed, demonstrating that distances up
to 10 km have no significant effect on entanglement. This sets quantum
cryptography with photon pairs as a practical competitor to the schemes based
on weak pulses.Comment: 4 pages, REVTeX, 2 postscript figures include
- …