18 research outputs found

    The Role of DmCatD, a Cathepsin D-Like Peptidase, and Acid Phosphatase in the Process of Follicular Atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a Vector of Chagas' Disease

    Get PDF
    In this work, we have investigated the involvement of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia of Dipetalogaster maxima, a hematophagous insect vector of Chagas' disease. For the studies, fat bodies, ovaries and hemolymph were sampled from anautogenous females at representative days of the reproductive cycle: pre-vitellogenesis, vitellogenesis as well as early and late atresia. Real time PCR (qPCR) and western blot assays showed that DmCatD was expressed in fat bodies and ovaries at all reproductive stages, being the expression of its active form significantly higher at the atretic stages. In hemolymph samples, only the immunoreactive band compatible with pro-DmCatD was observed by western blot. Acid phosphatase activity in ovarian tissues significantly increased during follicular atresia in comparison to pre-vitellogenesis and vitellogenesis. A further enzyme characterization with inhibitors showed that the high levels of acid phosphatase activity in atretic ovaries corresponded mainly to a tyrosine phosphatase. Immunofluorescence assays demonstrated that DmCatD and tyrosine phosphatase were associated with yolk bodies in vitellogenic follicles, while in atretic stages they displayed a different cellular distribution. DmCatD and tyrosine phosphatase partially co-localized with vitellin. Moreover, their interaction was supported by FRET analysis. In vitro assays using homogenates of atretic ovaries as the enzyme source and enzyme inhibitors demonstrated that DmCatD, together with a tyrosine phosphatase, were necessary to promote the degradation of vitellin. Taken together, the results strongly suggested that both acid hydrolases play a central role in early vitellin proteolysis during the process of follicular atresia.Fil: Leyria, Jimena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Nazar, MagalĂ­. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; Argentin

    Morphological and ultrastructural characterization of hemocytes in an insect model, the hematophagous dipetalogaster maxima (Hemiptera: Reduviidae)

    Get PDF
    Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among special-ists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh prepara-tions, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.Fil: Moyetta, Natalia Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ramos, Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Leyria, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    The fat body of the hematophagous insect, panstrongylus megistus (Hemiptera: Reduviidae): Histological features and participation of the β-chain of ATP synthase in the lipophorin-mediated lipid transfer

    Get PDF
    In insects, lipid transfer to the tissues is mediated by lipophorin, the major circulating lipoprotein, mainly through a nonendocytic pathway involving docking receptors. Currently, the role of such receptors in lipid metabolism remains poorly understood. In this work, we performed a histological characterization of the fat body of the Chagas’ disease vector, Panstrongylus megistus (Burmeister), subjected to different nutritional conditions. In addition, we addressed the role of the β-chain of ATP synthase (β-ATPase) in the process of lipid transfer from lipophorin to the fat body. Fifth-instar nymphs in either fasting or fed condition were employed in the assays. Histological examination revealed that the fat body was composed by diverse trophocyte phenotypes. In the fasting condition, the cells were smaller and presented a homogeneous cytoplasmic content.The fat body of fed insects increased in size mainly due to the enlargement of lipid stores. In this condition, trophocytes contained abundant lipid droplets, and the rough endoplasmic reticulum was highly developed and mitochondria appeared elongated. Immunofluorescence assays showed that the β-ATPase, a putative lipophorin receptor, was located on the surface of fat body cells colocalizing partially with lipophorin, which suggests their interaction. No changes in β-ATPase expression were found in fasting and fed insects. Blocking the lipophorin–β-ATPase interaction impaired the lipophorin-mediated lipid transfer to the fat body. The results showed that the nutritional status of the insect influenced the morphohistological features of the tissue. Besides, these findings suggest that β-ATPase functions as a lipophorin docking receptor in the fat body.Fil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Leyria, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Moyetta, Natalia Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ramos, Fabián O.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Settembrini, Beatriz Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    DmCatD, a cathepsin D-like peptidase of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae): Purification, bioinformatic analyses and the significance of its interaction with lipophorin in the internalization by developing oocytes

    Get PDF
    DmCatD, a cathepsin D-like peptidase of the hematophagous insect Dipetalogaster maxima, is synthesized by the fat body and the ovary and functions as yolk protein precursor. Functionally, DmCatD is involved in vitellin proteolysis. In this work, we purified and sequenced DmCatD, performed bioinformatic analyses and investigated the events involved in its targeting and storage in developing oocytes. By ion exchange and gel filtration chromatography, DmCatD was purified from egg homogenates and its identity was confirmed by mass spectrometry. Approximately 73% of the full-length transcript was sequenced. The phylogeny indicated that DmCatD has features which suggest its distancing from “classical” cathepsins D. Bioinformatic analyses using a chimeric construct were employed to predict post-translational modifications. Structural modeling showed that DmCatD exhibited the expected folding for this type of enzyme, and an active site with conserved architecture. The interaction between DmCatD and lipophorin in the hemolymph was demonstrated by co-immunoprecipitation. Colocalization of both proteins in developing oocyte membranes and yolk bodies was detected by immunofluorescence. Docking assays favoring the interaction DmCatD-lipophorin were carried out after modeling lipophorin of a related triatomine species. Our results suggest that lipophorin acts as a carrier for DmCatD to facilitate its further internalization by the oocytes. The mechanisms involved in the uptake of peptidases within the oocytes of insects have not been reported. This is the first experimental work supporting the interaction between cathepsin D and lipophorin in an insect species, enabling us to propose a pathway for its targeting and storage in developing oocytes.Fil: Leyria, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Fruttero, Leonardo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Pontificia Universidade Católica do Rio Grande do Sul; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ligabue Braun, Rodrigo. Universidade Federal do Rio Grande do Sul; BrasilFil: Defferrari, Marina S.. University of Toronto; CanadáFil: Arrese, Estela L.. Oklahoma State University; Estados UnidosFil: Soulages, José L.. Oklahoma State University; Estados UnidosFil: Settembrini, Beatriz Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; ArgentinaFil: Carlini, Célia Regina R S. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentin

    Structure-Function insights of Jaburetox and Soyuretox: Novel intrinsically disordered polypeptides derived from plant ureases

    Get PDF
    Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.Fil: Grahl, Matheus V. Coste. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Lopes, Fernanda Cortez. Universidade Federal do Rio Grande do Sul; BrasilFil: Martinelli, Anne H. Souza. Universidade Federal do Rio Grande do Sul; BrasilFil: Carlini, CĂ©lia Regina R. S.. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; Argentin

    Soyuretox, an intrinsically disordered polypeptide derived from soybean (Glycine max) ubiquitous urease with potential use as a biopesticide

    Get PDF
    Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.Fil: Kappaun, Karine. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Martinelli, Anne H. S.. Universidade Federal do Rio Grande do Sul; BrasilFil: Broll, Valquiria. Universidade Federal do Rio Grande do Sul; BrasilFil: Zambelli, Barbara. Universidad de Bologna; ItaliaFil: Lopes, Fernanda C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Ligabue-Braun, Rodrigo. Universidade Federal do Rio Grande do Sul; BrasilFil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Moyetta, Natalia Rita. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Bonan, Carla D.. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Carlini, CĂ©lia Regina R. S.. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Ciurli, Stefano. Universidad de Bologna; Itali

    The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas’ disease vector Panstrongylus megistus (Hemiptera: Reduviidae)

    No full text
    Lipophorin is the main lipoprotein in the hemolymph of insects. During vitellogenesis, lipophorin delivers its hydrophobic cargo to developing oocytes by its binding to non-endocytic receptors at the plasma membrane of the cells. In some species however, lipophorin may also be internalized to some extent, thus maximizing the storage of lipid resources in growing oocytes. The ectopic β chain of ATP synthase (β-ATPase) was recently described as a putative non-endocytic lipophorin receptor in the anterior midgut of the hematophagous insect Panstrongylus megistus. In the present work, females of this species at the vitellogenic stage of the reproductive cycle were employed to investigate the role of β-ATPase in the transfer of lipids to the ovarian tissue. Subcellular fractionation and western blot revealed the presence of β-ATPase in the microsomal membranes of the ovarian tissue, suggesting its localization in the plasma membrane. Immunofluorescence assays showed partial co-localization of β-ATPase and lipophorin in the membrane of oocytes as well as in the basal domain of the follicular epithelial cells. Ligand blotting and co-immunoprecipitation approaches confirmed the interaction between lipophorin and β-ATPase. In vivo experiments with an anti-β-ATPase antibody injected to block such an interaction demonstrated that the antibody significantly impaired the transfer of fatty acids from lipophorin to the oocyte. However, the endocytic pathway of lipophorin was not affected. On the other hand, partial inhibition of ATP synthase activity did not modify the transfer of lipids from lipophorin to oocytes. When the assays were performed at 4 °C to diminish endocytosis, the results showed that the antibody interfered with lipophorin binding to the oocyte plasma membrane as well as with the transfer of fatty acids from the lipoprotein to the oocyte. The findings strongly support that β-ATPase plays a role as a docking lipophorin receptor at the ovary of P. megistus, similarly to its function in the midgut of such a vector. In addition, the role of β-ATPase as a docking receptor seems to be independent of the enzymatic ATP synthase activity.Fil: Fruttero, Leonardo Luis. Pontificia Universidade Católica do Rio Grande do Sul; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Leyria, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ramos, Fabian O.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Stariolo, Raúl Luis. Servicio Nacional de Chagas. Coordinación Nacional de Control de Vectores; ArgentinaFil: Settembrini, Beatriz Patricia. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima

    No full text
    Triatomines are vectors of Chagas disease and important model organisms in insect physiology. “Kissing bugs” are obligatory hematophagous insects. A blood meal is required to successfully complete oogenesis, a process primarily controlled by juvenile hormone (JH). We used Dipetalogaster maxima as an experimental model to further understand the roles of JH in the regulation of vitellogenesis and oogenesis. A particular focus was set on the role of JH controlling lipid and protein recruitment by the oocytes. The hemolymph titer of JH III skipped bisepoxide increased after a blood meal. Following a blood meal there were increased levels of mRNAs in the fat body for the yolk protein precursors, vitellogenin (Vg) and lipophorin (Lp), as well as of their protein products in the hemolymph; mRNAs of the Vg and Lp receptors (VgR and LpR) were concomitantly up-regulated in the ovaries. Topical administration of JH induced the expression of Lp/LpR and Vg/VgR genes, and prompted the uptake of Lp and Vg in pre-vitellogenic females. Knockdown of the expression of LpR by RNA interference in fed females did not impair the Lp-mediated lipid transfer to oocytes, suggesting that the bulk of lipid acquisition by oocytes occurred by other pathways rather than by the endocytic Lp/LpR pathway. In conclusion, our results strongly suggest that JH signaling is critical for lipid storage in oocytes, by regulating Vg and Lp gene expression in the fat body as well as by modulating the expression of LpR and VgR genes in ovaries.Fil: Ramos, Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Leyria, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Nouzova, Marcela. Florida International University; Estados UnidosFil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Noriega, Fernando G.. Florida International University; Estados UnidosFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    The entomotoxin Jack Bean Urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae)

    Get PDF
    In insects, cathepsin D is a lysosomal aspartic endopeptidase involved in several functions such as digestion, defense and reproduction. Jack Bean Urease (JBU) is the most abundant urease isoform obtained from the seeds of the plant Canavalia ensiformis. JBU is a multifunctional protein with entomotoxic effects unrelated to its catalytic activity, by mechanisms not yet fully understood. In this work, we employed nymphs of the hematophagous insect Dipetalogaster maxima as an experimental model in order to study the effects of JBU on D. maxima CatD (DmCatD). In insects without treatment, immunofluorescence assays revealed a conspicuous distribution pattern of DmCatD in the anterior and posterior midgut as well as in the fat body and hemocytes. Western blot assays showed that the active form of DmCatD was present in the fat body, the anterior and posterior midgut; whereas the proenzyme was visualized in hemocytes and hemolymph. The transcript of DmCatD and its enzymatic activity was detected in the anterior and posterior midgut as well as in fat body and hemocytes. JBU injections induced a significant increase of DmCatD activity in the posterior midgut (at 3 h post-injection) whereas in the hemolymph, such an effect was observed after 18 h. These changes were not correlated with modifications in DmCatD mRNA and protein levels or changes in the immunofluorescence pattern. In vitro experiments might suggest a direct effect of the toxin in DmCatD activity. Our findings indicated that the tissue-specific increment of cathepsin D activity is a novel effect of JBU in insects.Fil: Moyetta, Natalia Rita. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Leyria, Jimena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Ramos, Fabian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Carlini, CĂ©lia Regina R S. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; Argentin

    β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae)

    No full text
    Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The β subunit of the ATP synthase complex (β-ATPase) was identified as a lipophorin binding protein. β-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that β-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and β-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of β-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the β-ATPase antibody significantly reduced the transfer of [3H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-3H]-oleic acid, supporting the involvement of lipophorin-β-ATPase association in the transfer of lipids. In addition, the β-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that β-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus.Fil: Fruttero, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: De Martini, Diogo R.. Universidade Federal do Rio Grande do Sul; BrasilFil: Rubiolo, Edilberto Rene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Carlini, Célia Regina R S. Universidade Federal do Rio Grande do Sul; BrasilFil: Canavoso, Lilian Etelvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin
    corecore