21 research outputs found

    Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contamination assessment; gather downhole electrical resistivity and magnetic susceptibility logs for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed rock drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.3 to 16.44 meters below seafloor and core recoveries as high as 75% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 revealed a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential, temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans, as well as verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, Mid-Atlantic Ridge, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif

    Metagenomic Comparison of Two Thiomicrospira Lineages Inhabiting Contrasting Deep-Sea Hydrothermal Environments

    Get PDF
    Background: The most widespread bacteria in oxic zones of carbonate chimneys at the serpentinite-hosted Lost City hydrothermal field, Mid-Atlantic Ridge, belong to the Thiomicrospira group of sulfur-oxidizing chemolithoautotrophs. It is unclear why Thiomicrospira-like organisms thrive in these chimneys considering that Lost City hydrothermal fluids are notably lacking in hydrogen sulfide and carbon dioxide. Methodology/Principal Findings: Here we describe metagenomic sequences obtained from a Lost City carbonate chimney that are highly similar to the genome of Thiomicrospira crunogena XCL-2, an isolate from a basalt-hosted hydrothermal vent in the Pacific Ocean. Even though T. crunogena and Lost City Thiomicrospira inhabit different types of hydrothermal systems in different oceans, their genomic contents are highly similar. For example, sequences encoding the sulfur oxidation and carbon fixation pathways (including a carbon concentration mechanism) of T. crunogena are also present in the Lost City metagenome. Comparative genomic analyses also revealed substantial genomic changes that must have occurred since the divergence of the two lineages, including large genomic rearrangements, gene fusion events, a prophage insertion, and transposase activity. Conclusions/Significance: Our results show significant genomic similarity between Thiomicrospira organisms inhabiting different kinds of hydrothermal systems in different oceans, suggesting that these organisms are widespread and highl

    Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B07103, doi:10.1029/2010JB007931.Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge

    In Search of Life Under the Seafloor

    No full text
    ISSN:0096-3941ISSN:2324-925

    Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q06016, doi:10.1029/2005GC001109.Near-bottom investigations of the cross section of the Atlantis Massif exposed in a major tectonic escarpment provide an unprecedented view of the internal structure of the footwall domain of this oceanic core complex. Integrated direct observations, sampling, photogeology, and imaging define a mylonitic, low-angle detachment shear zone (DSZ) along the crest of the massif. The shear zone may project beneath the nearby, corrugated upper surface of the massif. The DSZ and related structures are inferred to be responsible for the unroofing of upper mantle peridotites and lower crustal gabbroic rocks by extreme, localized tectonic extension during seafloor spreading over the past 2 m.y. The DSZ is characterized by strongly foliated to mylonitic serpentinites and talc-amphibole schists. It is about 100 m thick and can be traced continuously for at least 3 km in the tectonic transport direction. The DSZ foliation arches over the top of the massif in a convex-upward trajectory mimicking the morphology of the top of the massif. Kinematic indicators show consistent top-to-east (toward the MAR axis) tectonic transport directions. Foliated DSZ rocks grade structurally downward into more massive basement rocks that lack a pervasive outcrop-scale foliation. The DSZ and underlying basement rocks are cut by discrete, anastomosing, normal-slip, shear zones. Widely spaced, steeply dipping, normal faults cut all the older structures and localize serpentinization-driven hydrothermal outflow at the Lost City Hydrothermal Field. A thin (few meters) sequence of sedimentary breccias grading upward into pelagic limestones directly overlies the DSZ and may record a history of progressive rotation of the shear zone from a moderately dipping attitude into its present, gently dipping orientation during lateral spreading and uplift.This work was supported by NSF grants OCE-9712430 and 0136816 to Karson and Kelley and Swiss SNF grant 2100-068055 to Früh-Green

    Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11 degrees N

    No full text
    Mantle peridotites from an exposed lithospheric section (Vema Lithospheric Section, VLS), generated during similar to 26 Ma at a similar to 80 km long Mid Atlantic Ridge segment (11 degrees N), have been sampled and studied to understand the evolution of the serpentinization process. The VLS was uplifted due to a 10 Ma transtensional event along the Vema transform. Before the uplift residual mantle rocks were lying beneath a 0.8-1.3 km thick basaltic crustal layer. The major and trace element compositions of the serpentinites, as well as their H, O, Sr, Cl and B isotopic compositions were interpreted based on thermal models of lithospheric spreading from ridge axis. The results suggest that serpentinization occurred mostly near the ridge axis. Serpentinization temperatures, estimated from stable isotopes, are consistent with resetting of the closure temperatures during the tectonic uplift of the lithospheric sliver, reflected by decreasing delta O-18 and increasing delta B-11 values. Modeling shows that the thermal influence of the transtensional event affected mainly the region close to the RTI (ridge-transform intersection). Petrological, elemental and isotopic data suggest that, when the ultramafic basal unit of the VLS was uplifted and exposed on the ocean floor, serpentinization became superseded by low temperature water-rock reactions, with Fe-Mn crust formation, which is still progressing, as recorded by delta D. Ultramafic mylonites, prevalent in a short stretch of the VLS, show only a partial serpentinization process, together with pervasive contamination by low-temperature Fe-Mn crust. (C) 2013 Elsevier B.V. All rights reserved

    Sublacustrine hydrothermal seeps and silicification of microbial bioherms in the Ediacaran Oued Dar’a caldera, Anti‐Atlas, Morocco

    No full text
    This paper presents a case study of the sublacustrine precipitation of hydrothermal silica ± TiO2 in the Ediacaran Mançour Group of the Saghro inlier, Anti‐Atlas, Morocco. Lacustrine carbonates containing stromatolitic mats and bioherms occur in ephemeral ponds developed within the Oued Da'ra caldera. Its syn‐eruptive infill consists of pyroclastites, ashflow tuffs, and subsidiary lava flows and sills, whereas inter‐eruptive deposition is mainly represented by slope‐related debris‐flow breccias and landslides, alluvial fans and fluvial channels. Carbonate production took place in a mosaic of differentially subsiding, fault‐bounded intra‐caldera blocks controlled by episodic collapse‐induced drowning, pyroclastic blanketing and migration of alluvial/fluvial environments. After microbial carbonate production, the carbonates recorded several early‐diagenetic processes, punctuated by polyphase fissuring (controlling secondary permeability) locally linked to hydrothermal influx. Three generations of carbonate cements are recognisable: (i) fibrous, botryoidal and blocky/drusy mosaics of calcite; (ii) idiotopic mosaics of dolomite caused by flushing of hypersaline Mg‐rich brines; and (iii) euhedral to drusy calcite via dedolomitization. The δ13C and δ18O values from carbonate cements broadly become successively isotopically lighter, as a result of meteoric and hydrothermal influence, and were probably overprinted by the Panafrican‐3 phase that affected the top of the Mançour Group. Two mechanisms of silicification are involved: (i) early‐diagenetic occlusion of interparticle pores at the sediment/water interface of pyroclastic substrates and reefal core and flanks; and (ii) hydrothermal precipitation of silica ± TiO2 lining fissures and vuggy porosity encased in the host rock. Silica conduits cross‐cutting lacustrine mats and bioherms exhibit high potential of preservation in collapsed volcanic calderas. Primary fluid inclusions of hydrothermal silica contain brine relics with NaCl/CaCl2 ratios of 2·1 to 4·4, representing minimum entrapment temperatures of about 142 to 204°C, and abiotic hydrocarbons (heavy alkanes) related to serpentinization of the volcanic and volcanosedimentary basement of the Oued Dar'a caldera
    corecore