33 research outputs found
Inhibition of PI3K Prevents the Proliferation and Differentiation of Human Lung Fibroblasts into Myofibroblasts: The Role of Class I P110 Isoforms
Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-β (TGF-β)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-β signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-β: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-β-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110δ and p110γ are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and β. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110γ and p110α in both TGF-β-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF
Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae
Among adults of closely related species, a trend in craniofacial evolutionary allometry (CREA) for larger taxa to be long-faced and smaller ones to have paedomorphic aspects, such as proportionally smaller snouts and larger braincases, has been demonstrated in some mammals and two bird lineages. Nevertheless, whether this may represent a ‘rule’ with few exceptions is still an open question. In this context, Felidae is a particularly interesting family to study because, although its members are short-faced, previous research did suggest relative facial elongation in larger living representatives. Using geometric morphometrics, based on two sets of anatomical landmarks, and traditional morphometrics, for comparing relative lengths of the palate and basicranium, we performed a series of standard and comparative allometric regressions in the Felidae and its two subfamilies. All analyses consistently supported the CREA pattern, with only one minor exception in the geometric morphometric analysis of Pantherinae: the genus Neofelis. With its unusually long canines, Neofelis species seem to have a relatively narrow cranium and long face, despite being smaller than other big cats. In spite of this, overall, our findings strengthen the possibility that the CREA pattern might indeed be a ‘rule’ among mammals, raising questions on the processes behind it and suggesting future directions for its study
Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses
Advances in 3D shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (µCT) scanners have been the "gold standard," recent improvements in 3D surface scanners may make this technology a faster, portable, and cost-effective alternative. Several studies have already compared the two devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia's smallest rodent to test whether a 3D scanner produces similar results to a µCT scanner.We captured 19 delicate mouse () crania with a µCT scanner and a 3D scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to test how variation due to scan device compared to other sources such as biologically relevant variation and operator error. We quantified operator error as levels of variation and repeatability. Further, we tested if the two devices performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected scatterplots of principal component analysis (PCA) scores for non-random patterns.In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability score. However, the 3D scan and µCT scan datasets performed identically in classifying individuals based on intra-specific patterns of sexual dimorphism.Compared to µCT scans, we find that even low resolution 3D scans of very small specimens are sufficiently accurate to classify intra-specific differences. We also make three recommendations for best use of low resolution data. First, we recommend that extreme caution should be taken when analyzing the asymmetric component of shape variation. Second, using 3D scans generates more random error due to increased landmarking difficulty, therefore users should be conservative in landmark choice and avoid multiple operators. Third, using 3D scans introduces a source of systematic error relative to µCT scans, therefore we recommend not combining them when possible, especially in studies expecting little biological variation. Our findings support increased use of low resolution 3D scans for most morphological studies; they are likely also applicable to low resolution scans of large specimens made in a medical CT scanner. As most vertebrates are relatively small, we anticipate our results will bolster more researchers in designing affordable large scale studies on small specimens with 3D surface scanners
Mitochondrial and nuclear intraspecific variation in the rusty blenny (Parablennius sanguinolentus, Blenniidae)
The genetic structure of Parablennius sanguinolentus from the northeastern Atlantic and Mediterranean was assessed using sequences from the mitochondrial control region (CR) and the first intron of the nuclear S7 ribosomal protein gene (S7). Our data show high genetic diversity for the central Mediterranean populations, contrasting with very low diversity in the Atlantic populations and in the westernmost Mediterranean population of Cabo de Gata. Both CR mismatch analysis and neutrality tests provide evidence of demographic and spatial expansion for the Atlantic and central Mediterranean populations. The significant correlation between genetic and geographic distances supported isolation-by-distance for the S7, but not for the CR, suggesting a complex scenario for the history of the rusty blenny in the Mediterranean Sea. The pattern of genetic structure displayed by P. sanguinolentus could be explained as the result of a post-glacial colonization of the Atlantic coast of Europe from the Mediterranean Sea